针对火星表面低温大气环境下多层隔热组件隔热性能大幅衰减、不能满足火星车保温需求的难题,提出了一种新型、高效、轻质纳米气凝胶隔热装置设计方法,采用在真空和火星大气环境下导热率极低的纳米气凝胶为隔热材料,通过基于低导热复合材料的盒盖式局部支撑封装、气凝胶与结构间填充缓冲泡沫进行多余物过滤、铺设反射屏进行辐射漏热隔离、开设排气孔等设计方法,解决了力学性能增强、多余物控制、辐射漏热隔离、快速泄复压等工程应用难题,成功完成纳米气凝胶在祝融号火星车的工程应用。地面试验测试结果表明,1 400 Pa、二氧化碳气氛、25 ℃时纳米气凝胶隔热装置总导热系数低至0.008 0 W/(m·K),有力保障了祝融号火星车舱内设备在零加热功率补偿条件下在轨温度仍处于允许范围内。火星车纳米气凝胶隔热装置总质量为5.95 kg,仅占火星车总质量的2.5%。
The insulation performance of the multi-layer insulation module degrades sharply in the low temperature atmosphere on the surface of Mars, so that the need for insulation of the Mars rover cannot be satisfied.The design method of a new, efficient and lightweight nano-aerogel thermal insulation device is proposed.Nano-aerogel, which has extremely low thermal conductivity in the vacuum and Mars atmosphere, is used as the insulation material.Using the methods such as box covering and local supporting based on low thermal conductivity composite materials, filling the space between nano-aerogel and the architecture with buffer foam to filter redundancy, laying the reflector to insulate radiation heat leakage and opening vent holes, the problems in application such as mechanical property enhancement, redundancy control, radiation heat leakage insulation, and rapid air entry and exit are solved.Nano-aerogel is successfully applied in Zhurong Rover.The ground test results show that in 1 400 Pa CO2 atmosphere, the total thermal conductivity of the nano-aerogel insulation device is 0.008 0 W/(m·K) at 25℃, which effectively ensures that the temperature of the equipment inside Zhurong Mars Rover is in the allowable range with zero compensation of heating power.The total weight of the nano-aerogel thermal insulation device is 5.95 kg,only 2.5% of the total weight of Zhurong Mars Rover.
[1] 于登云, 孙泽洲, 孟林智, 等.火星探测发展历程与未来展望[J].深空探测学报, 2016, 3(2):108-113. YU D Y, SUN Z Z, MENG L Z, et al.The development process and prospects for Mars exploration[J].Journal of Deep Space Exploration, 2016, 3(2):108-113(in Chinese).
[2] HERNDLER S, RANZENBERGER C.Development of passive thermal control for Mars surface missions[C]//46th International Conference on Environmental Systems.Reston:AIAA, 2016:120.
[3] MORRISON D, SAGAN C, POLLACK J B.Martian temperatures and thermal properties[J].Icarus, 1969, 11(1):36-45.
[4] ALEXANDER M.Mars transportation environment definition document:NASA/TM-2001-210935[R].Washington, D.C.:NASA, 2001.
[5] HICKEY G S.Thermal insulation for Mars surface exploration[C]//27th International Conference on Environmental Systems.Warrendale:SAE, 1997:972466.
[6] SCACCABAROZZI D, SAGGIN B, TARABINI M.Thermal insulators' performances in simulated Mars environment[J].Journal of Heat Transfer, 2014, 136(1):011302.
[7] 陈阳, 宁献文, 苏生, 等.不同真空度下多层隔热组件传热性能的实验研究[J].中国科学:技术科学, 2015, 45(3):263-267. CHEN Y, NING X W, SU S, et al.Experiment research on heat-transfer capability of the multi-layer insulation blankets under different vacuum degrees[J].Scientia Sinica (Technologica), 2015, 45(3):263-267(in Chinese).
[8] BHEEKHUN N, ABU TALIB A R, HASSAN M R.Aerogels in aerospace:An overview[J].Advances in Materials Science and Engineering, 2013, 2013:406065.
[9] HICKEY G S, BRAUN D, WEN L C, et al.Integrated lightweight structure and thermal insulation for Mars rover[C]//25th International Conference on Environmental Systems.Warrendale:SAE, 1995:951523.
[10] EISEN H J, WEN L C, HICKEY G, et al.Sojourner Mars rover thermal performance[C]//28th International Conference on Environmental Systems.Warrendale:SAE, 1998:981685.
[11] HICKEY G S.Materials for thermal control for Mars surface operations[J].MRS Proceedings, 1998, 551:25.
[12] NOVAK K S, PHILLIPS C J, BIRUR G C, et al.Development of a thermal control architecture for the Mars exploration rovers[J].AIP Conference Proceedings, 2003, 654(1):194-205.
[13] NOVAK K S, PHILLIPS C J, SUNADA E T, et al.Mars exploration rover surface mission flight thermal performance[C]//35th International conference on environmental systems.Warrendale:SAE, 2005:2827.
[14] TSUYUKI G T, BIRUR G C, NOVAK K S, et al.Lightweight thermal insulation for Mars surface applications[C]//39th Aerospace Sciences Meeting and Exhibit.Reston:AIAA, 2001:0213.
[15] STEVEN M J, JEFFERY S.Application of aerogels in space exploration[M].[S.l]:Aerogels Handbook, 2011:721-746.
[16] HICKEY G S, BRAUN D, WEN L C, et al.Integrated thermal control and qualification of the Mars rover[C]//26th International Conference on Environmental Systems.Warrendale:SAE, 1996:961534.
[17] 艾素芬, 向艳超, 雷尧飞, 等.火星车低密度纳米气凝胶隔热材料制备及性能研究[J].深空探测学报, 2020, 7(5):466-473. AI S F, XIANG Y C, LEI Y F, et al.Preparation and characterization of ultra-low density nano-aerogel insulation materials for Mars rover[J].Journal of Deep Space Exploration, 2020, 7(5):466-473(in Chinese).
[18] 艾素芬, 孙言, 雷尧飞, 等.低密度气凝胶的高温结构变化及其耐温性研究[J].北京化工大学学报(自然科学版), 2019, 46(1):63-68. AI S F, SUN Y, LEI Y F, et al.Characterization of the high-temperature resistance performance of silica aerogels with different densities[J].Journal of Beijing University of Chemical Technology (Natural Science Edition), 2019, 46(1):63-68(in Chinese).
[19] 李健, 张恩爽, 刘圆圆, 等.超低密度气凝胶的制备及应用[J].化学进展, 2020, 32(6):713-726. LI J, ZHANG E S, LIU Y Y, et al.Preparation of the ultralow density aerogel and its application[J].Progress in Chemistry, 2020, 32(6):713-726(in Chinese).
[20] 陈少华, 金迪, 赵啟伟, 等.航天器多层隔热组件制造及安装技术要求:Q/W 398C-2018[S].北京:中国空间技术研究院, 2018. CHEN S H, JIN D, ZHAO Q W, et al.Technical requirements for manufacturing and installation of spacecraft multilayer thermal insulation:Q/W 398C-2018[S].Beijing:China Academy of Space Technology, 2018(in Chinese).