基于截面SEM数据特征的微尘三维形貌建模方法
收稿日期: 2021-08-06
修回日期: 2021-09-06
录用日期: 2021-11-22
网络出版日期: 2021-12-01
基金资助
国家科技重大专项(2017-VII-0012-0107)
A method for modeling three-dimensional morphology of dust particle based on cross-sectional SEM data characteristics
Received date: 2021-08-06
Revised date: 2021-09-06
Accepted date: 2021-11-22
Online published: 2021-12-01
Supported by
National Science and Technology Major Project(2017-VII-0012-0107)
多尘环境下服役的航空航天装备其性能受到微尘的严重影响,如沙漠起降的军用直升机、运输机和火星多尘表面使用的火星车等。为加强航空航天装备的防尘设计,微尘的三维形貌十分关键且影响着微尘的气动和附着等特性,但由于微尘粒径分布宽、成分复杂、外形不规则,获得精确的微尘三维形貌十分困难。提出了一种基于截面SEM数据特征的微尘三维形貌建模方法,通过逐层剥离获得高精度的微尘断层二维图像,基于埋入的钢球在断层图像中的半径变化,解决断层图像间距的精确测定难题,实现了基于断层图像的微尘三维形貌重构。以粒径100 μm微尘样品,利用所提出方法进行了三维形貌重构和分析,获得了500个砂尘的近似三维模型。定量化表征了微尘的三维形貌,形成了微尘的外形特性分析方法,为研究微尘气动、反弹与吸附特性提供了微尘的形貌数据,进而推动航空发动机冲蚀防护、航空发动机气体动力学与航天探测器的研究,对航空航天装备的防尘设计有重要意义。
周林宏 , 何光宇 , 臧顺来 . 基于截面SEM数据特征的微尘三维形貌建模方法[J]. 航空学报, 2023 , 44(4) : 426201 -426201 . DOI: 10.7527/S1000-6893.2021.26201
The performance of aerospace equipment in dusty environment is seriously affected by dust particles, such as military helicopters and transport planes taking off and landing in the desert and Mars rovers used on the dusty surface of Mars. To strengthen the dustproof design of aerospace equipment, the 3D morphology of dust particles is very important, and affects the aerodynamic and adhesion characteristics of dust particles. However, due to the wide distribution of particle sizes, complex compositions and irregular shapes, it is very difficult to obtain accurate 3D morphology of dust particles. In this paper, a novel method for modeling the 3D morphology of dust particles is proposed based on cross-sectional SEM data characteristics. The tomographic images with high resolution are obtained by layers peeling of dust particle samples. Based on the radius variation of the embedded steel ball in the fault image, the problem of accurate measurement of fault image spacing is solved. The 3D morphology reconstruction of fine dust based on the fault image is realized. The proposed method is used to reconstruct and analyze the 3D morphology of the dust particle samples with a particle size of 100 μm. The accurate 3D morphologies of 500 dust particles are obtained. In this paper, the 3D morphology of dust particle is quantitatively characterized, and the analysis method of the shape characteristics of dust particle is developed. The morphological data of dust particles is provided for studying the aerodynamic, rebound and adsorption characteristics of dust particles, promoting the research on aero-engine erosion protection, aero-engine aerodynamics and space probe, as well as dustproof design of aerospace equipment.
1 | 何光宇, 李应红, 柴艳, 等. 航空发动机压气机叶片砂尘冲蚀防护涂层关键问题综述[J]. 航空学报, 2015, 36(6):1733-1743. |
HE G Y, LI Y H, CHAI Y, et al. Review of key issues on coating against sand erosion of aero-engine compressor blade[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1733-1743 (in Chinese). | |
2 | HE G Y, SUN D Y, CHEN J, et al. Key problems affecting the anti-erosion coating performance of aero-engine compressor: a review[J]. Coatings, 2019, 9(12): 821. |
3 | PEPI M, SQUILLACIOTI R, PFLEDDERER L, et al. Solid particle erosion testing of helicopter rotor blade materials[J]. Journal of Failure Analysis and Prevention, 2012, 12(1): 96-108. |
4 | CAO X, HE W F, HE G Y, et al. Sand erosion resistance improvement and damage mechanism of TiAlN coating via the bias-graded voltage in FCVA deposition[J]. Surface and Coatings Technology, 2019, 378: 125009. |
5 | NAVEED M, SCHLAG H, K?NIG F, et al. Influence of the erodent shape on the erosion behavior of ductile and brittle materials[J]. Tribology Letters, 2017, 65(1): 18. |
6 | SUN Z P, HE G Y, MENG Q J, et al. Corrosion mechanism investigation of TiN/Ti coating and TC4 alloy for aircraft compressor application[J]. Chinese Journal of Aeronautics, 2020, 33(6): 1824-1835. |
7 | LI Y R, CHEN F Y, LI R N, et al. Research on aerodynamic characteristics of wind turbine airfoil and blade in sand-wind environment[J]. International Transactions on Electrical Energy Systems, 2021, 31(11):e12541. |
8 | 石瑞芳, 林建忠. 气固两相湍流场纳米颗粒演变特性综述[J]. 航空学报, 2021, 42(12): 625825. |
SHI R F, LIN J Z. A review on evolution characteristics of nanoparticles in gas-solid two-phase turbulent flow field[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 625825 (in Chinese). | |
9 | 王萍, 郑晓静. 风沙两相流数值模拟研究进展[J]. 航空学报, 2021, 42(9): 625767. |
WANG P, ZHENG X J. Advances in numerical simulation of wind-blown sand[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625767 (in Chinese). | |
10 | 牛佳佳, 王锁芳, 李鹏飞. 非球形粒子反弹分布特性试验探究[J]. 推进技术, 2018, 39(3): 638-644. |
NIU J J, WANG S F, LI P F. Experimental research on rebound distribution characteristics of non-spherical particles[J]. Journal of Propulsion Technology, 2018, 39(3): 638-644 (in Chinese). | |
11 | 赵聪敏, 何清, 杨兴华, 等. 巴丹吉林沙漠风沙流输沙沙粒形貌特征分析[J]. 沙漠与绿洲气象, 2012, 6(2): 25-29. |
ZHAO C M, HE Q, YANG X H, et al. Analysis of sand shape characteristics from the wind-sand flows in Badanjilin desert[J]. Desert and Oasis Meteorology, 2012, 6(2): 25-29 (in Chinese). | |
12 | 王红芸, 李岩, 赵丽丽, 等. 激光粒度分析仪分析方法的研究[J]. 科技资讯, 2014, 12(19): 213-214. |
WANG H Y, LI Y, ZHAO L L, et al. Study on analysis method of laser particle size analyzer[J]. Science & Technology Information, 2014, 12(19): 213-214 (in Chinese). | |
13 | 倪寿亮. 粒度分析方法及应用[J]. 广东化工, 2011, 38(2): 223-224, 227. |
NI S L. Particle size analysis method and its application[J]. Guangdong Chemical Industry, 2011, 38(2): 223-224, 227 (in Chinese). | |
14 | KOMBA J J, ANOCHIE-BOATENG J K, VAN DER MERWE STEYN W. Analytical and laser scanning techniques to determine shape properties of aggregates[J]. Transportation Research Record: Journal of the Transportation Research Board, 2013, 2335(1): 60-71. |
15 | ALSHIBLI K A, DRUCKREY A M, AL-RAOUSH R I, et al. Quantifying morphology of sands using 3D imaging[J]. Journal of Materials in Civil Engineering, 2015, 27(10): 04014275. |
16 | SUN Y, INDRARATNA B, NIMBALKAR S. Three-dimensional characterisation of particle size and shape for ballast[J]. Géotechnique Letters, 2014, 4(3): 197-202. |
17 | JIA X D, GARBOCZI E J. Advances in shape measurement in the digital world[J]. Particuology, 2016, 26: 19-31. |
18 | LIANG H, SHEN Y, XU J H, et al. Multiscale three-dimensional morphological characterization of calcareous sand particles using spherical harmonic analysis[J]. Frontiers in Physics, 2021, 9: 744319. |
19 | ZHOU X W, LIU J Z, ZHU J, et al. Shape characterization of sand particles based on digital image processing technology[J]. Journal of Southeast University, 2020, 36(3): 313-321. |
20 | 万成, 张肖宁, 贺玲凤, 等. 基于真实细观尺度的沥青混合料三维重构算法[J]. 中南大学学报(自然科学版), 2012, 43(7): 2813-2820. |
WAN C, ZHANG X N, HE L F, et al. 3D reconstruction algorithm of asphalt concrete based on real microscopic scale[J]. Journal of Central South University (Science and Technology), 2012, 43(7): 2813-2820 (in Chinese). | |
21 | PENG Y P, WU Z B, CAO G Z, et al. Three-dimensional reconstruction of wear particles by multi-view contour fitting and dense point-cloud interpolation[J]. Measurement, 2021, 181: 109638. |
22 | ZHOU B, WANG J, WANG H. Three-dimensional sphericity, roundness and fractal dimension of sand particles[J]. Géotechnique, 2018, 68(1): 18-30. |
23 | 张永弟, 岳彦芳, 杨光, 等. 提高CT图像手骨模型重建精度的方法[J]. 计算机辅助设计与图形学学报, 2017, 29(10): 1802-1806. |
ZHANG Y D, YUE Y F, YANG G, et al. A method of increasing precision for hand bone models reconstruction of CT images[J]. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(10): 1802-1806 (in Chinese). | |
24 | 吕继淮, 刘守慎, 尹万力, 等. 军用直升机防砂尘要求 [S]. 1991. |
LV J H, LIU S S, YIN W L, et al. Requirements for sand and dust control of military helicopters [S]. 1991 (in Chinese). | |
25 | KIM H, AHN E, CHO S, et al. Comparative analysis of image binarization methods for crack identification in concrete structures[J]. Cement and Concrete Research, 2017, 99: 53-61. |
26 | LORENSEN W E. History of the marching cubes algorithm[J]. IEEE Computer Graphics and Applications, 2020, 40(2): 8-15. |
/
〈 |
|
〉 |