论文

基于Realizable k-ε模型的叶盘通道电解加工多场耦合分析

  • 张聚臣 ,
  • 李世成 ,
  • 刘洋 ,
  • 李兴林
展开
  • 1. 合肥工业大学 机械工程学院, 合肥 230009;
    2. 南京航空航天大学 机电学院, 南京 210016

收稿日期: 2021-04-13

  修回日期: 2021-05-09

  网络出版日期: 2021-12-01

基金资助

安徽省自然科学基金(2008085QE250);国家博士后科学基金(2018M642246);江苏省自然科学基金(BK20190419)

Multi-physical field analysis of tunnel ECM employed Realizable k-ε model

  • ZHANG Juchen ,
  • LI Shicheng ,
  • LIU Yang ,
  • LI Xinglin
Expand
  • 1. College of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China;
    2. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China

Received date: 2021-04-13

  Revised date: 2021-05-09

  Online published: 2021-12-01

Supported by

Natural Science Foundation of Anhui Province (2008085QE250); China Postdoctoral Science Foundation (2018M642246); Natural Science Foundation of Jiangsu Province (BK20190419)

摘要

叶盘通道电解加工(ECM)是决定整体叶盘电解加工成形精度的关键工序,其加工间隙不规则、建模困难。基于Realizable k-ε模型建立叶盘通道电解加工的气液两相流模型,根据参数传递关系建立多物理场耦合模型,分析加工间隙内电解液温度、氢气体积分数、电导率等重要参数的分布规律。仿真结果显示电解液在侧面间隙出现涡流现象,使该区域氢气堆积、温度上升,影响工件的成形表面质量,并导致该处的材料蚀除量减小,该结果在试验中得到证实。试验与仿真得出的工件轮廓形状变化趋势一致,试验与仿真获得的端面平衡间隙尺寸分别为0.26、0.33 mm,仿真的相对误差(27%)明显小于经典公式的相对误差(73%)。因此,模型可较为准确地模拟叶盘通道电解加工成形过程,反映各参数对工件成形的影响过程。

本文引用格式

张聚臣 , 李世成 , 刘洋 , 李兴林 . 基于Realizable k-ε模型的叶盘通道电解加工多场耦合分析[J]. 航空学报, 2022 , 43(4) : 525670 -525670 . DOI: 10.7527/S1000-6893.2021.25670

Abstract

Tunnel ECM is a key process that affects the machining accuracy of blisk ECM of which the forming model is difficult to establish. In this paper, a two-phase flow model based on Realizable k-ε model is established, and a multi-physical field coupling model is built based on the parameter relationship of tunnel ECM. The parameter distribution of temperature, hydrogen volume fraction and electrolyte conductivity in the process and their influence on the surface quality were analyzed by simulation, which shows the vortex region in the side gap increases hydrogen volume and electrolyte temperature. This phenomenon affects the surface quality, decreases the material removal rate, and is verified by the experiments. The balance gaps obtained by simulation and experiment are 0.33 mm and 0.26 mm. Thus the relative error of simulation (27%) is much lower than that of theoretical calculation (73%). Therefore, the model is consistent with the forming process and reflects the influence of machining parameters on the workpiece forming of blisk tunnel ECM.

参考文献

[1] REN J X, YAO C F, ZHANG D H, et al. Research on tool path planning method of four-axis high-efficiency slot plunge milling for open blisk[J]. The International Journal of Advanced Manufacturing Technology, 2009, 45(1-2):101-109.
[2] ZHU D, YU L G, ZHAO J B, et al. Research on shaping law in electrochemical machining for the leading/trailing edge of the blade[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(1-4):559-565.
[3] WANG J, XU Z Y, WANG J T, et al. Electrochemical machining on blisk channels with a variable feed rate mode[J]. Chinese Journal of Aeronautics, 2021, 34(6):151-161.
[4] ZHU D, ZHOU Y W, ZHANG R H, et al. Investigation of leveling ability improvement in pulse electrochemical machining for aero structural components[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(5-8):1723-1732.
[5] 孙伦业, 徐正扬, 朱荻. 镍基高温合金整体叶盘叶栅通道电解加工的成形精度控制[J]. 机械科学与技术, 2013, 32(8):1230-1234, 1238. SUN L Y, XU Z Y, ZHU D. The accuracy control of Ni-based superalloy blisk channels by electrochemical machining[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(8):1230-1234, 1238(in Chinese).
[6] 韦树辉, 徐正扬, 孙伦业, 等. 整体叶盘叶栅通道电解加工工具电极进给方向优化设计[J]. 电加工与模具, 2012(4):21-25, 32. WEI S H, XU Z Y, SUN L Y, et al. Optimization of cathode feed direction in radial feed electrochemical machining[J]. Electromachining & Mould, 2012(4):21-25, 32(in Chinese).
[7] 廖德平, 李寒松, 徐正扬, 等. 整体叶盘叶栅通道径向进给电解加工电场仿真和试验研究[J]. 电加工与模具, 2013(2):30-34. LIAO D P, LI H S, XU Z Y, et al. The electric field simulation and experimental study on the method of electrode radial feeding in blisk ECM[J]. Electromachining & Mould, 2013(2):30-34(in Chinese).
[8] 张矿磊, 曲宁松, 朱栋, 等. 整体叶盘叶栅通道电解加工流场仿真研究[J]. 机械制造与自动化, 2016, 45(6):98-101. ZHANG K L, QU N S, ZHU D, et al. Investigation on flow field of cascade passage in electrochemical machining of blades[J]. Machine Building & Automation, 2016, 45(6):98-101(in Chinese).
[9] 周小超, 陈远龙, 侯亭波, 等. 基于气液两相流模型的电解加工多场耦合仿真[J]. 中国机械工程, 2019, 30(10):1135-1141. ZHOU X C, CHEN Y L, HOU T B, et al. Multi-physics coupling simulation of ECM based on gas-liquid two-phase flow model[J]. China Mechanical Engineering, 2019, 30(10):1135-1141(in Chinese).
[10] 陈远龙, 方明, 裴迪, 等. 叶片电化学加工过程多场耦合仿真[J]. 中国机械工程, 2016, 27(22):3087-3092. CHEN Y L, FANG M, PEI D, et al. Multi-physics coupling simulation of ECM processes for compressor blade[J]. China Mechanical Engineering, 2016, 27(22):3087-3092(in Chinese).
[11] 江伟, 干为民, 张晔. 叶片脉冲电解加工过程的多场耦合模拟[J]. 电加工与模具, 2015(2):24-28, 37. JIANG W, GAN W M, ZHANG Y. Multiphysics numerical simulation of pulse electrochemical machining for a engine blade[J]. Electromachining & Mould, 2015(2):24-28, 37(in Chinese).
[12] ZHOU X C, CAO C Y, WANG H X, et al. Study on the multi-field coupling model of electrolyte temperature distribution in electrochemical machining[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109(5-6):1655-1662.
[13] LIU G D, TONG H, LI Y, et al. Multiphysics research on electrochemical machining of micro holes with internal features[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(5-6):1527-1542.
[14] FUJISAWA T, INABA K, YAMAMOTO M, et al. Multi-physics simulation of electro-chemical machining process for three-dimensional compressor blade[C]//Proceedings of ASME/JSME 20075th Joint Fluids Engineering Conference. New York:ASME, 2009:1779-1786.
[15] KLOCKE F, KLINK A, VESELOVAC D, et al. Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes[J]. CIRP Annals, 2014, 63(2):703-726.
[16] DABROWSKI L, PACZKOWSKI T. Computer simulation of two-dimensional electrolyte flow in electrochemical machining[J]. Russian Journal of Electrochemistry, 2005, 41(1):91-98.
[17] JERIN A, KARUNAKARAN K. Advances in simulation modeling and analysis of curvilinear electro chemical machining process[J]. Materials Today:Proceedings, 2021, 37:1588-1591.
[18] WANG M H, LIU W S, PENG W. Multiphysics research in electrochemical machining of internal spiral hole[J]. The International Journal of Advanced Manufacturing Technology, 2014, 74(5-8):749-756.
[19] SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3):227-238.
[20] 张淑佳, 李贤华, 朱保林, 等. k-ε涡粘湍流模型用于离心泵数值模拟的适用性[J]. 机械工程学报, 2009, 45(4):238-242. ZHANG S J, LI X H, ZHU B L, et al. Applicability of k-ε eddy viscosity turbulence models on numerical simulation of centrifugal pump[J]. Journal of Mechanical Engineering, 2009, 45(4):238-242(in Chinese).
[21] WANG Y D, XU Z Y, LIU J, et al. Study on flow field of electrochemical machining for large size blade[J]. International Journal of Mechanical Sciences, 2021, 190:106018.
[22] LI J Z, WANG D Y, ZHU D, et al. Analysis of the flow field in counter-rotating electrochemical machining[J]. Journal of Materials Processing Technology, 2020, 275:116323.
[23] 王福元, 徐家文, 赵建社, 等. 基于加工过程数值模拟的电解加工参数选择方法[J]. 中国机械工程, 2006, 17(7):716-718, 723. WANG F Y, XU J W, ZHAO J S, et al. A method of selecting electrochemical machining parameters based on numerical simulation of electrochemical machining process[J]. China Mechanical Engineering, 2006, 17(7):716-718, 723(in Chinese).
[24] FUJISAWA T, INABA K, YAMAMOTO M, et al. Multiphysics simulation of electrochemical machining process for three-dimensional compressor blade[J]. Journal of Fluids Engineering, 2008, 130(8):081602.
[25] JIANG X C, LIU J, ZHU D, et al. Research on stagger coupling mode of pulse duration and tool vibration in electrochemical machining[J]. Applied Sciences, 2018, 8(8):1296.
[26] 王明明, 周泽生, 姜小琛, 等. 基于高速摄像的脉动态电解加工电流特性研究[J]. 机械制造与自动化, 2019, 48(6):7-10, 28. WANG M M, ZHOU Z S, JIANG X C, et al. Study of current characteristics of pulse dynamic electrochemical machining based on high-speed camera[J]. Machine Building & Automation, 2019, 48(6):7-10, 28(in Chinese).
[27] DECONINCK D, DAMME S V, DECONINCK J. A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part II:Numerical simulation[J]. Electrochimica Acta, 2012, 69:120-127.
[28] FANG X L, QU N S, ZHANG Y D, et al. Improvement of hole exit accuracy in electrochemical drilling by applying a potential difference between an auxiliary electrode and the anode[J]. Journal of Materials Processing Technology, 2014, 214(3):556-564.
[29] ZHAO X, JIA Z X, LI W, et al. Fabrication of optimized streamlined micro nozzles by hybrid electrochemical techniques[J]. Journal of Micromechanics and Microengineering, 2018, 28(12):125006.
[30] 马新周, 罗志坚, 胡纯蓉, 等. 双相Ti-48Al-2Cr-2 Nb合金电解加工表面微观形貌演变研究[J]. 包装学报, 2020, 12(4):45-56. MA X Z, LUO Z J, HU C R, et al. The microstructure evolution of two-phase Ti-48Al-2Cr-2 Nb alloy during electrochemical machining[J]. Packaging Journal, 2020, 12(4):45-56(in Chinese).
[31] DECONINCK D, VAN DAMME S, ALBU C, et al. Study of the effects of heat removal on the copying accuracy of the electrochemical machining process[J]. Electrochimica Acta, 2011, 56(16):5642-5649.
[32] 徐家文, 云乃彰, 王建业. 电化学加工技术:原理·工艺及应用[M]. 北京:国防工业出版社, 2008. XU J W, YUN N Z, WANG J Y. Electrochemical machining technique:Principle, technology and application[M]. Beijing:National Defense Industry Press, 2008(in Chinese).
文章导航

/