[1] 郭向东, 柳庆林, 刘森云, 等. 结冰风洞中过冷大水滴云雾演化特性数值研究[J]. 航空学报, 2020, 41 (8): 123655.
GUO X D, LIU Q L, LIU S Y, et al. Numerical study of supercooled large droplet cloud evolution characteristics in icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 123655(in Chinese).
[2] 易贤, 王斌, 李伟斌, 等. 飞机结冰冰形测量方法研究进展[J]. 航空学报, 2017, 38 (2): 520700.
YI X, WANG B, LI W B, et al. Research progress on ice shape measurement approaches for aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520700 (in Chinese).
[3] 桂业伟, 周志宏, 李颖晖. 关于飞机结冰的多重安全边界问题[J]. 航空学报, 2017, 38 (2): 520723.
GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520723(in Chinese).
[4] KIM H S, BRAGG M B. Effects of leading-edge ice accretion geometry on Airfoil Performance[R].Reston, VA: AIAA.1999, AIAA-1999-3150
[5] BRAGG M B, HUTCHISON T, MERRET J, et al. Effects of Ice Accretion on Aircraft Flight Dynamics[J]. 2000: AIAA 2000-0360.
[6] 钟长生, 王立新. 结冰对飞机动力学特性影响的分析方法及其进展[J]. 飞行力学, 2004, 12 (4): 22-24.
ZHONG C S, WANG L X. Analysis methods and its development about effect of ice accretion on aircraft flight dynamics characteristics[J]. Flight Dynamics, 2004, 22(4): 22-24, 84(in Chinese).
[7] POKHARIYAL D, BRAGG M B, HUTCHISON T, et al. Aircraft Flight Dynamics with Simulated Ice Accretion[R].Reston, VA: AIAA.2001, AIAA-2001-0541
[8] 袁坤刚, 曹义华. 积冰几何特性对翼型性能影响的神经网络预测[J]. 北京航空航天大学学报, 2008, 34 (8): 900-903.
YUAN K G, CAO Y H. Effect of ice geometry to airfoil performance using neural networks prediction[J] Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(8): 900-903(in Chinese).
[9] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 31 (5786): 504-507.
[10] 吴正文. 卷积神经网络在图像分类中的应用研究[D]. 成都: 电子科技大学, 2015.
WU W Z. Application research of convolution neural network in image classification[D]. Chengdu: University of Electronic Science and Technology, 2015. (in Chinese)
[11] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[DB/OL]. arXiv:1511.06434, 2015.
[12] GATYS L A, ECKER A S, BETHGE M. A neural algorithm of artistic style[DB/OL]. arXiv:1508.06576, 2015.
[13] KARPATHY A, TODERICI G, SHETTY S, LEUNG T. 2014 Large scale video classification with convolutional neural networks[C]// In Proc. IEEE Conf. on Computer Vision and Pattern Recognition. IEEE, 2014 of Conference.1725–1732.
[14] FRANK S, GANG L, Dong Y. Conversational speech transcription using context-dependent deep neural networks[C]// The 12th Annual Conference of the International Speech Communication Association. Florence, Traly: 2011 of Conference.
[15] 王怡星, 韩仁坤, 刘子扬, 等. 流体力学深度学习建模技术研究进展[J]. 航空学报, 2021, 42(4): 524779.
WANG Y X, HAN R K, LIU Z Y, et al. Progress of deep learning modeling technology for fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524779(in Chinese)
[16] 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42 (4): 524689.
ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689(in Chinese).
[17] KUTZ J N. Deep learning in fluid dynamics[J]. Journal of Fluid Mechanics, 2017, 814: 1-4.
[18] YILMAZ E, GERMAN B. A convolutional neural network approach to training predictors for airfoil performance[R].Reston, VA: AIAA.2017, AIAA 2017-3660
[19] ZHANG Y, SUNG W J, Mavris D N. Application of convolutional neural network to predict airfoil lift coefficient[C]// 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Kissimmee, USA: 2018 of Conference.1903.
[20] XIAO H, WU J L, WANG J X, et al. Physics informed machine learning for predictive turbulence modeling: progress and perspectives[R]. Reston, VA: AIAA.2017, AIAA-2017-1712
[21] HUANG J J, DUAN L, WANG J X, et al. High-mach-number turbulence modeling using machine learning and direct numerical simulation database[R].Reston, VA: AIAA.2017, AIAA-2017-0315
[22] LING J, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modeling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807: 155-166.
[23] 张伟伟, 朱林阳, 刘溢浪. 机器学习在湍流建模型构建中的应用进展[J]. 空气动力学报, 2019, 37 (03): 444-451.
ZHANG W W, ZHU L Y, LIU Y L, et al. Progresses in the application of machine learning in turbulence modeling[J]. Acta Aerodynamica Sinica, 2019, 37(3): 444-454 (in Chinese).
[24] 廖鹏, 姚磊江, 白国栋, 等. 基于深度学习的混合翼型前缘压力分布预测[J]. 航空动力学报, 2019, 34 (8): 1751-1758.
LIAO P, YAO L J, BAI G D, et al. Prediction of hybrid airfoil leading edge pressure distribution based on deep learning[J]. Journal of Aerospace Power, 2019, 34(8): 1751-1758(in Chinese).
[25] RAISSI M, YAZDANI A, KARNIADAKIS G. E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations[J]. Science, 2020, 367 (6481): 1026-1030.
[26] GUO X X, LI W, LORIO F. Convolutional neural networks for steady flow approximation[C]// ACM SigKDD International Conference. San Francisco, CA: 2016 of Conference.481-490.
[27] LEE S, YOU D. Data-driven prediction of unsteady flow over a circular cylinder using deep learning[J]. Journal of Fluid Mechanics, 2019, 879: 217-254.
[28] 叶舒然, 张珍, 王一伟, 等. 基于卷积神经网络的深度学习流场特征识别及应用进展[J]. 航空学报, 2021, 42 (4): 524736.
YE S R, ZHANG Z, WANG Y W, et al. Progress in deep convolutional neural network based flow field recognition and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524736(in Chinese).
[29] LECUN Y, BOTTOU L, BENGIO Y. GradientGbased learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86 (11): 2278-2324.
[30] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521 (7553): 436-446.
[31] 陈海, 钱炜祺, 何磊. 基于深度学习的翼型气动系数预测[J]. 空气动力学学报, 2018, 36 (2): 294-299.
CHEN H, QIAN W Q, HE L. Aerodynamic coefficient prediction of airfoils based on deep learning[J]. Acta Aerodynamica Sinica, 2018, 36(2): 294-299(in Chinese).
[32] GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]// International Conference on Artificial Intelligence and Statistics. Brookline, MA: 2010 of Conference.249-256.
[33] NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]// Proceedings of the 27th International Conference on Machine Learning. Haifa, ILMS: 2010 of Conference.807-814.
[34] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]// The Advances in Neural Information Processing Systems. Lake Tahoe, NV, USA: 2012 of Conference.1097–1105.
[35] 何磊, 钱炜祺, 汪清, 等. 机器学习方法在气动特性建模中的应用[J]. 空气动力学学报, 2019, 37 (3): 470-479.
HE L,QIAN W Q,WANG Q,et al.Applications of machine learning for aerodynamic characteristics modeling[J].Acta Aerodynamica Sinica,2019,37(3):470-479
[36] CHEN H, HE L, QIAN W Q, et al. Multiple Aerodynamic Coefficient Prediction of Airfoils Using Convolutional Neural Network[J]. Symmetry, 2020, 12 (4): 544.
[37] 何磊, 钱炜祺, 易贤, 王强. 基于转置卷积神经网络的翼型结冰冰形图像化预测方法[J]. 国防科技大学学报, 2021, 43 (3): 98-106.
HE L, QIAN W Q, YI X, et al. Graphical prediction method of airfoil ice shape based on transposed convolution neural networks[J]. Journal of National University of Defense Technology, 2021, 43(3): 98-106(in Chinese).
[38] BRAGG M B. An Experimental Study of the Aerodynamics of a NACA 0012Airfoil with a Simulated Glaze Ice Accretion[R].Reston, VA: AIAA.1986, NASA-CR-179897
[39] BRAGG M B, BROEREN A P, BLUMENTHAL L A. Iced-Airfoil Aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41 (5): 323–362.
[40] BRAGG M B, KHODADOUST A, Spring S A. Measurem ents in a leading-edge separation bubble due to a simulated airfoil ice accretion[J]. AIAA journal, 1992, 30 (6): 1462–1467.
[41] CARL O G. GRUMMP Version 0.2.1 User's Guide[R]. Columbia: University of British Columbia.1997,
[42] 张耀冰, 邓有奇, 吴晓军, 孟凡菊. DLR-F6翼身组合体数值计算[J]. 空气动力学学报, 2011, 29 (2): 163-169.
ZHANG Y B, DENG Y Q, WU X J, et al. Drag prediction of DLR-F6 using MFlow unstructured mesh solver[J]. Acta Aerodynamica Sinica, 2011, 29(2):163-169.
[43] KINGMA D P, BA J. Adam: Amethod for stochastic optimization[DB/OL]. arXiv preprint arciv:1412,6980, 2014.