分层大气湍流场对远场声爆传播的影响
收稿日期: 2021-09-09
修回日期: 2021-10-14
录用日期: 2021-11-03
网络出版日期: 2021-11-10
基金资助
国家自然科学基金(12072285);陕西省自然科学基金(2020JM-127);陕西省杰出青年基金(2020JC-13)
Effects of stratified atmospheric turbulence on farfield sonic boom propagation
Received date: 2021-09-09
Revised date: 2021-10-14
Accepted date: 2021-11-03
Online published: 2021-11-10
Supported by
National Natural Science Foundation of China(12072285);Shaanxi Natural Science Foundation(2020JM-127);Shaanxi Science Fund for Distinguished Young Scholars(2020JC-13)
研究大气湍流对声爆的影响对于新一代超声速民机的低声爆设计具有重要意义。在真实大气环境中,大气湍流是普遍存在的,其会使低声爆波形在由高空向地面传播的过程中发生扭曲、畸变和振荡,并改变波形的能量分布。利用基于单向近似假设的二维HOWARD方程,以类Tu-144飞机的N型波和经过JSGD声爆最小化理论设计的低声爆波形为对象,研究分层大气湍流对N型波和低声爆波形的影响。首先,介绍了考虑大气边界层湍流效应的声爆传播模拟方法,包括改进的二维HOWARD方程及其离散求解方法、分层大气湍流场的建模方法,并采用JAXA抛体试验数据对预测方法的有效性进行了验证,同时与KZK方程预测结果进行了对比。其次,运用本文发展方法研究了N型波和低声爆波形在分层大气边界层湍流场中的传播情况,对地面可观测波形的主观噪声级和超压峰值进行了统计分析,发现大气湍流对增大N型波和低声爆波形主观噪声级(ASEL、PLdB)的概率很小,但很大程度上会增强波形超压峰值。最后,通过改变大气湍流生成过程中3个参数的数值,研究了不同强度的大气湍流场对声爆波形的影响,结果表明:风速脉动幅值和湍流积分尺度的增强对N型波和低声爆波形的感觉声压级影响较大,其平均值随湍流强度的增强而减小,但最大值却增大。因此,对于超声速民机低声爆设计来讲,仍然需要确定大气湍流对地面声爆的影响程度,评估湍流场作用下波形偏离设计结果的可能性。
乔建领 , 韩忠华 , 丁玉临 , 宋文萍 , 宋笔锋 . 分层大气湍流场对远场声爆传播的影响[J]. 航空学报, 2023 , 44(2) : 626350 -626350 . DOI: 10.7527/S1000-6893.2021.26350
It is of significance to study the effect of atmospheric turbulence on sonic boom for the design of next-generation low-boom supersonic commercial aircraft. The atmosphere turbulence in the real world will distort the waveform and change the sound energy distribution on the spectrum domain, when the sonic boom is propagated from the cruising altitude to the ground. In this paper, a modified Heterogeneous One-Way Approximation for the Resolution of Diffraction (HOWARD) equation is developed to study the effects of the stratified atmosphere turbulence on sonic boom waveforms, taking the N-type wave of a Tu-144-like aircraft and the low-boom waveform designed based on the JSGD sonic boom minimization theory as examples. First, a method for simulating sonic boom propagation through the atmospheric boundary layer is introduced, which includes the modified HOWARD equation together with the numerical solving strategy and the modeling method for stratified atmospheric turbulence. The above method is validated by comparing the predictions with the flight test data of LBM and NWM in the JAXA D-SEND project. Comparisons of predictions by the above method and the KZK equation are also carried out. Second, the method proposed is applied to investigate the propagation of N-type and low-boom waves through an atmospheric turbulence. The statistics of noises and the peak overpressure for the observable waveforms on the ground show that the probability of increasing noises (ASEL and PLdB) due to atmosphere turbulence is lower, but peak overpressure is highly possible to increase due to atmosphere turbulence. Finally, the method is also applied to study the effect of intensity of atmosphere turbulence on sonic boom by changing three parameters for generating turbulence. The enhancement of atmosphere turbulence described by the wind fluctuation and the integral scale has great influence on the perceived level of the N-type and low-boom waves. With the increase of turbulence intensity, the average values of the decibel become lower, while the maximum values of the decibel become greater. Therefore, it is necessary to evaluate effects of atmosphere turbulence on sonic boom in the design of low-boom supersonic commercial aircraft.
1 | 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8): 2507-2528. |
ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2507-2528 (in Chinese). | |
2 | 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4): 620-635. |
HAN Z H, QIAO J L, DING Y L, et al. Key technologies for next-generation environmentally-friendly supersonic transport aircraft: a review of recent progress[J]. Acta Aerodynamica Sinica, 2019, 37(4): 620-635 (in Chinese). | |
3 | 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2022, 43(9): 626310. |
DING Y L, HAN Z H, QIAO J L, et al. Research progress of key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9):626310 (in Chinese). | |
4 | 钱战森, 韩忠华. 声爆研究的现状与挑战[J]. 空气动力学学报, 2019, 37(4): 601-619, 600. |
QIAN Z S, HAN Z H. Progress and challenges of sonic boom research[J]. Acta Aerodynamica Sinica, 2019, 37(4): 601-619, 600 (in Chinese). | |
5 | STULL R B. An introduction to boundary layer meteorology[M]. Dordrecht: Kluwer Academic Publishers, 1988. |
6 | MAGLIERI D J, PARROTT T J, HILTON D A, et al. Lateral-spread sonic-boom ground-pressure measurements from airplanes at altitudes to 75,000 feet and at Mach numbers to 2.0: NASA-TND-2021[R]. Washington, D.C.: NASA, 1963. |
7 | PIERCE A D. Spikes on sonic‐boom pressure waveforms[J]. The Journal of the Acoustical Society of America, 1968, 44(4): 1052-1061. |
8 | CROW S C. Distortion of sonic bangs by atmospheric turbulence[J]. Journal of Fluid Mechanics, 1969, 37(3): 529-563. |
9 | PIERCE A D. Statistical theory of atmospheric turbulence effects on sonic‐boom rise times[J]. The Journal of the Acoustical Society of America, 1971, 49(3B): 906-924. |
10 | AVER’YANOV M V, KHOKHLOVA V A, SAPOZH? NIKOV O A, et al. Parabolic equation for nonlinear acoustic wave propagation in inhomogeneous moving media[J]. Acoustical Physics, 2006, 52(6): 623-632. |
11 | STOUT T A, SPARROW V W, BLANC-BENON P. Evaluation of numerical predictions of sonic boom level variability due to atmospheric turbulence[J]. The Journal of the Acoustical Society of America, 2021, 149(5): 3250-3260. |
12 | DAGRAU F, RéNIER M, MARCHIANO R, et al. Acoustic shock wave propagation in a heterogeneous medium: A numerical simulation beyond the parabolic approximation[J]. The Journal of the Acoustical Society of America, 2011, 130(1): 20-32. |
13 | KANAMORI M, TAKAHASHI T, ISHIKAWA H, et al. Numerical evaluation of sonic boom deformation due to atmospheric turbulence[J]. AIAA Journal, 2021, 59(3): 972-986. |
14 | BRADLEY K A, SPARROW V W, MORGENSTERN J M, et al. Sonic boom in atmospheric turbulence (SonicBAT): The influence of turbulence on shaped sonic booms: NASA/CR-2020-220509[R].Washington, D.C.: NASA, 2020. |
15 | Japan Aerospace Exploration Agency. Drop test for simplified evaluation of non-symmetrically distributed sonic boom[EB/OL]. (2012-03-30) [2020-08-18]. . |
16 | BLANC-BENON P, LIPKENS B, DALLOIS L, et al. Propagation of finite amplitude sound through turbulence: Modeling with geometrical acoustics and the parabolic approximation[J]. The Journal of the Acoustical Society of America, 2002, 111(1): 487-498. |
17 | AVERIYANOV M, BLANC-BENON P, CLEVELAND R O, et al. Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media[J]. The Journal of the Acoustical Society of America, 2011, 129(4): 1760-1772. |
18 | TAKAHASHI H, KANAMORI M, NAKA Y, et al. Statistical characterization of atmospheric turbulence behavior responsible for sonic boom waveform deformation[J]. AIAA Journal, 2018, 56(2): 673-686. |
19 | YULDASHEV P V, OLLIVIER S, KARZOVA M M, et al. Statistics of peak overpressure and shock steepness for linear and nonlinear N-wave propagation in a kinematic turbulence[J]. The Journal of the Acoustical Society of America, 2017, 142(6): 3402-3415. |
20 | FUJINO K, KIKUCHI R, SHIMOYAMA K, et al. Effects of uncertainties in atmospheric turbulence and weather predictions on sonic boom: AIAA-2017-0280[R]. Reston: AIAA, 2017. |
21 | YULDASHEV P V, KARZOVA M M, KHOKHLOVA V A, et al. Numerical simulation of a nonlinear parabolic equation for analyzing the perceived loudness statistics of sonic boom wave after propagation through atmospheric turbulent layer[J]. Acoustical Physics, 2021, 67(1): 26-37. |
22 | OSTASHEV V E, WILSON D K. Acoustics in moving inhomogeneous media[M]. Boca Raton: CRC Press, Taylor & Francis Group, 2015. |
23 | 冷岩, 钱战森, 杨龙. 均匀各向同性大气湍流对声爆传播特性的影响[J]. 航空学报, 2020, 41(2): 123290. |
LENG Y, QIAN Z S, YANG L. Homogeneous isotropic atmospheric turbulence effects on sonic boom propagation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 123290 (in Chinese). | |
24 | WERT K, BLANC-BENON P, JUVE D. Effect of turbulence scale resolution on numerical simulation of atmospheric sound propagation: AIAA-1998-2245[R]. Reston: AIAA, 1998. |
25 | SEEBASS R, ARGROW B. Sonic boom minimization revisited: AIAA-1998-2956[R]. Reston: AIAA, 1998. |
26 | 乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5): 121736. |
QIAO J L, HAN Z H, SONG W P. An efficient surrogate-based global optimization for low sonic boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121736 (in Chinese). | |
27 | 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5): 623344. |
HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623344 (in Chinese). | |
28 | 张力文, 韩忠华, 宋文萍, 等. 声爆产生、传播和抑制机理研究进展[J]. 航空学报, 2022,43(12):125649. |
ZHANG L W, HAN Z H, SONG W P, et al. Recent progress of sonic boom generation, propagation, and mitigation mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2022,43(12):125649. | |
29 | CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin: The University of Texas at Austin, 1995. |
30 | RALLABHANDI S K. Advanced sonic boom prediction using the augmented Burgers equation[J]. Journal of Aircraft, 2011, 48(4): 1245-1253. |
31 | 乔建领, 韩忠华, 丁玉临, 等. 基于广义Burgers方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报, 2019, 37(4): 663-674. |
QIAO J L, HAN Z H, DING Y L, et al. Sonic boom prediction method for supersonic transports based on augmented Burgers equation[J]. Acta Aerodynamica Sinica, 2019, 37(4): 663-674 (in Chinese). | |
32 | 王迪, 钱战森, 冷岩. 广义Burgers方程声爆传播模型高阶格式离散[J]. 航空学报, 2022, 43(1): 289-301. |
WANG D, QIAN Z S, LENG Y. High-order scheme discretization of sonic boom propagation model based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 289-301 (in Chinese). | |
33 | 张绎典, 黄江涛, 高正红. 基于增广Burgers方程的音爆远场计算及应用[J]. 航空学报, 2018, 39(7): 122039. |
ZHANG Y D, HUANG J T, GAO Z H. Far field simulation and applications of sonic boom based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 122039 (in Chinese). | |
34 | LUQUET D, MARCHIANO R, COULOUVRAT F. Long range numerical simulation of acoustical shock waves in a 3D moving heterogeneous and absorbing medium[J]. Journal of Computational Physics, 2019, 379: 237-261. |
35 | QIAO J L, HAN Z H, ZHANG L W, et al. Far-field sonic boom prediction considering atmospheric turbulence effects: An improved approach[J]. Chinese Journal of Aeronautics, 2022, 35(9): 208-225. |
36 | PIERCE A D. Acoustics: An introduction to its physical principles and applications[M]. 3rd ed. Cham: Springer, 2019. |
37 | KADER B A, YAGLOM A M. Mean fields and fluctuation moments in unstably stratified turbulent boundary layers[J]. Journal of Fluid Mechanics, 1990, 212: 637-662. |
38 | BURGERS J M. Statistical problems connected with the solution of a nonlinear partial differential equation[M]∥Nonlinear Problems of Engineering. Amsterdam: Elsevier, 1964: 123-137. |
39 | HAYES W, HAEFELI R, KULSRUD H E. Sonic boom propagation in a stratified atmosphere, with computer program: NASA-CR-1299[R]. Washington,D.C.: NASA, 1969. |
40 | KANAMORI M, TAKAHASHI T, MAKINO Y, et al. Comparison of simulated sonic boom in stratified atmosphere with flight test measurements[J]. AIAA Journal, 2018, 56(7): 2743-2755. |
41 | LEE Y. Numerical solution of the KZK equation for pulsed finite amplitude sound beams in thermoviscous fluids[D]. Austin: The University of Texas at Austin, 1993. |
42 | GALLIN L J, RéNIER M, GAUDARD E, et al. One-way approximation for the simulation of weak shock wave propagation in atmospheric flows[J]. The Journal of the Acoustical Society of America, 2014, 135(5): 2559-2570. |
43 | STEVENS S S. Perceived level of noise by mark VII and decibels (E)[J]. The Journal of the Acoustical Society of America, 1972, 51(2B): 575-601. |
44 | JACKSON G M, LEVENTHALL H G. Calculation of the perceived level of noise (PLdB) using Stevens' method (Mark VII)[J]. Applied Acoustics, 1973, 6(1): 23-34. |
/
〈 |
|
〉 |