基于逆向增广Burgers方程的声爆反演技术
收稿日期: 2021-08-20
修回日期: 2021-09-17
录用日期: 2021-10-09
网络出版日期: 2021-10-21
基金资助
陕西省自然科学基金(2021JQ-076);民机科研项目
Sonic boom inversion technology based on inverse augmented Burgers equation
Received date: 2021-08-20
Revised date: 2021-09-17
Accepted date: 2021-10-09
Online published: 2021-10-21
Supported by
Natural Science Foundation of Shaanxi Province(2021JQ-076);Civil Aircraft Research Project
声爆问题一直是制约超声速客机发展的障碍之一,因此低声爆设计技术在超声速客机的设计中尤为重要。逆向增广Burgers方程可将中场声压信号反演至近场,能够为低声爆反设计工作提供优化目标。围绕逆向增广Burgers方程展开研究,运用算子分裂法和正则化伪抛物型方程法对逆向方程进行数值求解,并求取对应的反向等效面积。借助3个标准算例,对数值方法的收敛性、求解准确度、不同中场高度及不同周向角下反演技术的计算精度进行了研究。针对逆向增广Burgers方程的特点,探讨了在中场设置目标波形进行反设计方法的可行性,并对声压信号中高频分量的传播特性进行了研究。研究认为上述方法能够较为准确地完成中场至近场的声压信号反演计算,并且使用中场目标波形代替地面目标波形能减轻反演距离对反演计算过程的影响。
关键词: 声爆; 逆向增广Burgers方程; 超声速客机; 低声爆反设计; 反向等效面积
顾奕然 , 黄江涛 , 陈树生 , 刘德园 , 高正红 . 基于逆向增广Burgers方程的声爆反演技术[J]. 航空学报, 2023 , 44(2) : 626258 -626258) . DOI: 10.7527/S1000-6893.2021.26258
Sonic boom has always been one of the obstacles restricting the development of supersonic airliners. Hence, the low sonic boom design technology is particularly important in the design of supersonic airliners. The inverse augmented Burgers equation can invert the mid-field sound pressure signal to the near-field and provide optimization objectives for the low sonic boom inverse design. This study uses the operator splitting technique and the pseudoparabolic equation method to numerically solve the inverse Burgers equation and calculate the corresponding reversed equivalent-area. With the assistance of the three standard examples, we investigate the convergence of the numerical method, the accuracy of the solution, and the calculation accuracy of the inversion technique at different field heights and different rolling angles. Based on the characteristics of the inverse augmented Burgers equation, the feasibility of setting target waveforms in the mid-field for the inverse design method is discussed, and the propagation characteristics of high-frequency components in the sound pressure signal are studied. The research shows that the above method can accurately complete the inversion calculation of the sound pressure signal from the mid-field to near-field, and that using mid-field target waveforms instead of ground target waveforms can reduce the influence of the inversion distance on the inversion calculation process.
1 | 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8): 2507-2528. |
ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2507-2528 (in Chinese). | |
2 | WOLZ R. A summary of recent supersonic vehicle studies at gulfstream aerospace[C]∥41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. |
3 | 袁新立, 王元元. 速度与环保的平衡: NASA超声速低声爆验证机项目进展与分析[J]. 环球飞行, 2016(6): 48-53. |
YUAN X L, WANG Y Y. Balance with speed and environmental protection-progress and analysis of-NASA supersonic and low sonic boom demonstrator project[J]. World Flight, 2016(6): 48-53 (in Chinese). | |
4 | PLOTKIN K J. State of the art of sonic boom modeling[J]. The Journal of the Acoustical Society of America, 2002, 111(1 Pt 2): 530-536. |
5 | PAWLOWSKI J, GRAHAM D, BOCCADORO C, et al. Origins and overview of the shaped sonic boom demonstration program[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
6 | SONG W B, KEANE A J. Surrogate-based aerodynamic shape optimization of a civil aircraft engine nacelle[J]. AIAA Journal, 2007, 45(10): 2565-2574. |
7 | KOZIEL S, LEIFSSON L. Surrogate-based aerodynamic shape optimization by variable-resolution models[J]. AIAA Journal, 2012, 51(1): 94-106. |
8 | ONG Y S, NAIR P B, KEANE A J. Evolutionary optimization of computationally expensive problems via surrogate modeling[J]. AIAA Journal, 2003, 41(4): 687-696. |
9 | YAMAMOTO K, INOUE O. Applications of genetic algorithm to aerodynamic shape optimization[C]∥12th Computational Fluid Dynamics Conference, 1995: 1650. |
10 | MATSUSHIMA K, TAKANASHI S, IWAMIYA T. Inverse design method for transonic multiple wing systems using integral equations[J]. Journal of Aircraft, 1997, 34(3): 322-329. |
11 | HIROSE N, TAKANASHI S, KAWAI N. Transonic airfoil design procedure utilizing a Navier-Stokes analysis code[J]. AIAA Journal, 1987, 25(3): 353-359. |
12 | OBAYASHI S, TAKANASHI S. Genetic optimization of target pressure distributions for inverse design methods[J]. AIAA Journal, 1996, 34(5): 881-886. |
13 | TAKANASHI S. Iterative three-dimensional transonic wing design using integral equations[J]. Journal of Aircraft, 1985, 22(8): 655-660. |
14 | RALLABHANDI S. Sonic boom adjoint methodology and its applications[C]∥29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011. |
15 | RALLABHANDI S K, NIELSEN E J, DISKIN B. Sonic-boom mitigation through aircraft design and adjoint methodology[J]. Journal of Aircraft, 2014, 51(2): 502-510. |
16 | AFTOSMIS M, NEMEC M, CLIFF S. Adjoint-based low-boom design with Cart3D (Invited)[C]∥29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011. |
17 | NADARAJAH S, JAMESON A, ALONSO J. Sonic boom reduction using an adjoint method for wing-body configurations in supersonic flow[C]∥9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 2002. |
18 | THOMAS C L. Extrapolation of sonic boom pressure signatures by the waveform parameter method: NASA TND-6832[R]. Washington, D.C. : NASA, 1972. |
19 | ANDERSON M D. The propagation of spherical N wave in an absorbing medium and its diffraction by a circular aperture[D]. Austin: University of Texas at Austin,1974. |
20 | RALLABHANDI S K. Advanced sonic boom prediction using the augmented Burgers equation[J]. Journal of Aircraft, 2011, 48(4): 1245-1253. |
21 | CLEVELAND R O. Propagation of sonic booms though a real, stratified atmosphere[D]. Austin: The University of Texas at Austin, 1995. |
22 | 张绎典, 黄江涛, 高正红. 基于增广Burgers方程的音爆远场计算及应用[J]. 航空学报, 2018, 39(7): 122039. |
ZHANG Y D, HUANG J T, GAO Z H. Far field simulation and applications of sonic boom based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 122039 (in Chinese). | |
23 | SEEBASS R, GEORGE A R. Sonic‐boom minimization[J]. Journal of the Acoustical Society of America, 1972, 51(49): 72. |
24 | LI W, RALLABHANDI S. Inverse design of low-boom supersonic concepts using reversed equivalent-area targets[J]. Journal of Aircraft, 2014, 51(1): 29-36. |
25 | RALLABHANDI S K. Application of adjoint methodology to supersonic aircraft design using reversed equivalent areas[J]. Journal of Aircraft, 2014, 51(6): 1873-1882. |
26 | ZHANG Y D, HUANG J T, GAO Z H, et al. Inverse design of low boom configurations using proper orthogonal decomposition and augmented Burgers equation[J]. Chinese Journal of Aeronautics, 2019, 32(6): 1380-1389. |
27 | PIERCE A D. Acoustics: An introduction to its physical principles and applications[M]. New York: McGraw-Hill Book Co., 1981: 56-57. |
28 | CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin: University of Texas at Austin, 1995. |
29 | PLOTKIN K. Review of sonic boom theory[C]∥12th Aeroacoustic Conference. Reston: AIAA, 1989. |
30 | RALLABHANDI S K, LOUBEAU A. Summary of propagation cases of the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2018, 56(3): 876-895. |
31 | 杨训仁, 陈宇. 大气声学[M]. 2版. 北京: 科学出版社, 2007. |
YANG X R, CHEN Y. Atmospheric acoustics[M]. 2nd ed. Beijing: Science Press, 2007 (in Chinese). | |
32 | PARK M A, CARTER M B. Nearfield summary and analysis of the third AIAA sonic boom prediction workshop C608 low boom demonstrator[C]∥AIAA Scitech 2021 Forum. Reston: AIAA, 2021. |
33 | PLOTKIN K, SIZOV N, MORGENSTERN J. Examination of sonic boom minimization experienced indoors[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
34 | PLOTKIN K. Review of sonic boom theory[C]∥12th Aeroacoustic Conference. Reston: AIAA, 1989. |
/
〈 |
|
〉 |