Fine grain aluminum alloy has the problems of poor thermal sensitivity and weldability, which limits its wide application in various fields. In this experiment, in order to reduce the property loss of base metal during the welding process, transient liquid phase soldering(TLP Soldering) is constructed. The effect of ultrasonic action time on the interface metallurgical reaction and mechanical properties of fine grain aluminum joint is studied at 400℃. Typical weld microstructure is composed of α-Al, β-Zn, eutectic microstructure and diffusion layer. With the increase of ultrasonic time, the content of Al in the weld increases gradually, and the β-Zn and eutectic structures decrease, while the content of α-Al and the thickness of diffusion layer increase gradually. Finally, a full α-Al solid solution joint is formed, and the shear strength reaches 238.5 MPa. with the time to 9 s.
[1] VERMA R P, KUMAR LILA M. A short review on aluminium alloys and welding in structural applications[J]. Materials Today:Proceedings, 2021, 46:10687-10691.
[2] 毛育青,江周明,刘奋成, 等. 7075-T6铝合金厚板FSW焊缝沿厚度方向上的显微组织演变规律[J]. 航空学报,2019,40(5):422640. MAO Y Q, JIANG Z M, LIU F C, et al. Microstructure evolution rule along weld thickness direction of FSW 7075-T6 aluminum alloy thick plate[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):422640(in Chinese).
[3] 王国军,王祝堂. 铝合金在中国民用航空器上的应用[J]. 轻合金加工技术,2017,45(11):1-11. WANG G J, WANG Z T. Application of aluminum alloy on China's civil aircraft[J]. Light Alloy Fabrication Technology, 2017, 45(11):1-11(in Chinese).
[4] ZHU Y T, VALIEV R Z, LANGDON T G, et al. Processing of nanostructured metals and alloys via plastic deformation[J]. MRS Bulletin, 2010, 35(12):977-981.
[5] VALIEV R Z, LANGDON T G. Achieving exceptional grain refinement through severe plastic deformation:new approaches for improving the processing technology[J]. Metallurgical and Materials Transactions A, 2011, 42(10):2942-2951.
[6] 刘峙麟. 细晶制造科学与工程:理论、应用、发展[J]. 塑性工程学报, 2021, 28(5):1-16. LIU Z L. Science and engineering of fine-grained manufacturing:Theories, applications and development[J]. Journal of Plasticity Engineering, 2021, 28(5):1-16(in Chinese).
[7] 孙小平, 石路, 管仁国, 等. 铝合金晶粒细化的研究进展与发展趋势[J]. 有色矿冶, 2010, 26(5):32-35. SUN X P, SHI L, GUAN R G, et al. Study progress and new trends of grain refinement in aluminium alloys[J]. Non-Ferrous Mining and Metallurgy, 2010, 26(5):32-35(in Chinese).
[8] 张宁, 王耀奇, 侯红亮, 等. 7B04铝合金超塑性变形行为[J]. 材料工程, 2017, 45(4):27-33. ZHANG N, WANG Y Q, HOU H L, et al. Superplastic deformation behavior of 7B04 Al alloy[J]. Journal of Materials Engineering, 2017, 45(4):27-33(in Chinese).
[9] 滕树满, 滕海灏. 等通道挤压制备铝基细晶材料的研究进展[J]. 材料导报, 2020, 34(增刊1):345-350. TENG S M, TENG H H. Development of ECAP process to the aluminum matrix fine grain material[J]. Materials Reports, 2020, 34(Sup. 1):345-350(in Chinese).
[10] LY R, HARTWIG K T, CASTANEDA H. Effects of strain localization on the corrosion behavior of ultra-fine grained aluminum alloy AA6061[J]. Corrosion Science, 2018, 139:47-57.
[11] SABIROV I, BARNETT M R, ESTRIN Y, et al. The effect of strain rate on the deformation mechanisms and the strain rate sensitivity of an ultra-fine-grained Al alloy[J]. Scripta Materialia, 2009, 61(2):181-184.
[12] 周思鹏, 孙有平, 何江美, 等. 焊接速度对2524铝合金光纤激光焊接头组织及性能的影响[J]. 特种铸造及有色合金, 2020, 40(10):1134-1138. ZHOU S P, SUN Y P, HE J M, et al. Effects of welding speed on microstructure and properties of 2524 aluminum alloy laser welding joints[J]. Special Casting & Nonferrous Alloys, 2020, 40(10):1134-1138(in Chinese).
[13] KANG S, SHIN J. The effect of laser beam intensity distribution on weld characteristics in laser welded aluminum alloy (AA5052)[J]. Optics & Laser Technology, 2021, 142:107239.
[14] MALOPHEYEV S, MIRONOV S, KULITSKIY V, et al. Friction-stir welding of ultra-fine grained sheets of Al-Mg-Sc-Zr alloy[J]. Materials Science and Engineering:A, 2015, 624:132-139.
[15] 王学刚, 严黔, 李辛庚. 5A02铝合金的瞬时液相扩散连接技术研究[J]. 轻合金加工技术, 2005,33(7):41-43. WANG X G, YAN Q, LI X G. Transient liquid phase bonding of Al-2Mg alloy[J]. Light Alloy Fabrication Technology, 2005,33(7):41-43(in Chinese).
[16] WANG Q, ZHU L, CHEN X G, et al. Si particulate-reinforced ZnAl based composites joints of hypereutectic Al50Si alloys by ultrasonic-assisted soldering[J]. Materials & Design, 2016, 107:41-46.
[17] LI Y X, LENG X S, CHENG S, et al. Microstructure design and dissolution behavior between 2024 Al/Sn with the ultrasonic-associated soldering[J]. Materials & Design, 2012, 40:427-432.
[18] 许志武, 李政玮, 罗潇雨, 等. 铝合金表面液态钎料声致铺展前沿氧化膜行为及其破除机制[J]. 稀有金属材料与工程, 2018, 47(11):3426-3432. XU Z W, LI Z W, LUO X Y, et al. Oxidation behavior at the frontier of ultrasonic-induced solder spreading on the aluminum alloy surface[J]. Rare Metal Materials and Engineering, 2018, 47(11):3426-3432(in Chinese).
[19] 李国栋. 超声作用下镁合金钎料性能及其钎焊过程研究[D]. 北京:北京工业大学, 2014. LI G D. Study of ultrasonic vibration on the properties of magnesium solder and its soldering process[D]. Beijing:Beijing University of Technology, 2014(in Chinese).
[20] 许志武. 液态钎料与铝基复合材料超声润湿复合机理及其应用研究[D]. 哈尔滨:哈尔滨工业大学,2008. XU Z W. Mechanism and application of ultrasonic wetting composite between liquid solder and aluminum matrix composites[D]. Harbin:Harbin Institute of Technology, 2008(in Chinese).