一种分布式电动飞机螺旋桨滑流影响机理

  • 饶崇 ,
  • 张铁军 ,
  • 魏闯 ,
  • 刘影
展开
  • 中国航空工业空气动力研究院 高速高雷诺数气动力航空科技重点实验室, 沈阳 110034

收稿日期: 2021-09-01

  修回日期: 2021-09-16

  网络出版日期: 2021-10-14

基金资助

航空工业气动院自主投入技术发展项目(YL2019-BM-01)

Influence mechanism of propeller slipstream on wing of a distributed electric aircraft scheme

  • RAO Chong ,
  • ZHANG Tiejun ,
  • WEI Chuang ,
  • LIU Ying
Expand
  • Aero Science Key Lab of High Reynolds Aerodynamic Force at High Speed, AVIC Aerodynamic Research Institute, Shenyang 110034, China

Received date: 2021-09-01

  Revised date: 2021-09-16

  Online published: 2021-10-14

Supported by

Independent Investment in Technology Development Projects of AVIC Aerodynamics Research Institute (YL2019-BM-01)

摘要

提出了一种分布式电推进螺旋桨飞机,采用二阶精度求解RANS方程的k-ω SST (Shear-Stress-Transport)湍流模型,基于多参考系(MRF)方法,针对低速特性进行数值模拟,得到了分布式螺旋桨滑流效应对全机气动特性的影响规律,重点对螺旋桨后方速度场及机翼表面压力分布进行分析。结果表明有滑流状态增加了全机升力和阻力,升力系数最大增量超过65%,且升力增量随迎角的增加而增大,改善了失速性能,增加了低头力矩;螺旋桨旋转增加了周向速度,改变了径向速度分布,增加轴向速度,高能量螺旋桨滑流改变了机翼当地升阻力特性;螺旋桨桨叶向上旋转一侧气流受上洗影响而局部迎角增加,另一侧局部迎角降低,越靠近桨盘位置,受螺旋桨洗流带来的影响越大;螺旋桨的旋转方向对螺旋桨两侧的机翼表面压力分布有较大影响,尤其是翼尖螺旋桨对全机气动性能影响较大。

本文引用格式

饶崇 , 张铁军 , 魏闯 , 刘影 . 一种分布式电动飞机螺旋桨滑流影响机理[J]. 航空学报, 2021 , 42(S1) : 726387 -726387 . DOI: 10.7527/S1000-6893.2021.26387

Abstract

This paper proposes a kind of distributed electric-propelled propeller aircraft, which uses the second-order precision k-ω Shear-Stress-Transport (SST) turbulence model to solve the RANS equation, and uses the Multiple Reference Frame (MRF) method to carry out numerical simulation for the low-speed characteristics, and this paper obtains the influence of the distributed propeller slipstream effect on the aerodynamic characteristics of the entire aircraft. The results show that the slip flow state increases the lift and drag of the whole aircraft, the maximum increment of lift coefficient is more than 65%, and the lift increment increases with the increase of angle of attack. The slip flow improves the stall performance, and increases the head-down moment. Meanwhile the rotation of the propeller increases the circumferential speed, changes the radial speed distribution, increases the axial speed, and the high-energy propeller slipstream changes the local lift and drag characteristics of the wing; the result also shows the airflow of the propeller blades rotates upwards, and the local angle of attack increases due to the up washing effect on one side, while the local angle of the attack on the other side decreases. The rotation direction of the propeller has a great influence on the surface pressure distribution of the wing on both sides of the propeller; especially the wingtip propeller has a great influence on the aerodynamic performance of the whole aircraft.

参考文献

[1] 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1): 57-68. HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 57-68 (in Chinese).
[2] 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2018, 39(1): 021651. KONG X H, ZHANG Z R, LU J W, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 021651 (in Chinese).
[3] STRASH D, LEDNICER D, RUBIN T. Analysis of propeller-induced aerodynamic effects[C]//16th AIAA Applied Aerodynamics Conference. Reston: AIAA, 1998.
[4] 左岁寒, 杨永. 螺旋桨滑流对带后缘襟翼机翼气动特性影响的数值分析[J]. 航空计算技术, 2007, 37(1): 54-57. ZUO S H, YANG Y. Numercal simulation of propeller/high-lift system interaction[J]. Aeronautical Computing Technique, 2007, 37(1): 54-57 (in Chinese).
[5] CHRISTIE R J, DUBOIS A, DERLAGA J M. Cooling of electric motors used for propulsion on SCEPTOR: NASA-TM-2017-219134[R].Washington, D.C.: NASA, 2017.
[6] PATTERSON M D, DERLAGA J M, BORER N K. High-lift propeller system configuration selection for NASA’s SCEPTOR distributed electric propulsion flight demonstrator[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016.
[7] BORER N K, PATTERSON M D, VIKEN J K, et al. Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016.
[8] STOLL A M, BEVIRT J, MOORE M D, et al. Drag reduction through distributed electric propulsion[C]//14th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2014.
[9] PATTEERSON M D, BORER N K. Approach consideration in aircraft with high-lift propeller systems: AIAA-2017-3782[R].Reston: AIAA, 2017.
[10] ENTER F. Zonal two equation k-ω turbulence models for aerodynamic flows[C]//23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Reston: AIAA, 1993.
[11] ELLSTEN A. Some improvements in Menter’s k-ω SST turbulence model[C]//29th AIAA, Fluid Dynamics Conference. Reston: AIAA, 1998.
[12] CARADONNA F X, TUNG C. Experimental and analytical studies of a model helicopter rotor in hover[J]. Vertica, 1981, 5(2): 149-161.
文章导航

/