激波/边界层干扰机理与控制专栏

激波/湍流边界层干扰的流动控制技术

  • 时晓天 ,
  • 吕蒙 ,
  • 赵渊 ,
  • 陶善聪 ,
  • 郝乐 ,
  • 袁湘江
展开
  • 中国航天空气动力技术研究院, 北京 100074

收稿日期: 2021-06-07

  修回日期: 2021-09-23

  网络出版日期: 2021-09-22

基金资助

国家重点研发计划(2019YFA0405300);国家自然科学基金(11872348,11802297)

Flow control technique for shock wave/turbulent boundary layer interactions

  • SHI Xiaotian ,
  • LYU Meng ,
  • ZHAO Yuan ,
  • TAO Shancong ,
  • HAO Le ,
  • YUAN Xiangjiang
Expand
  • China Academy of Aerospace Aerodynamics, Beijing 100074, China

Received date: 2021-06-07

  Revised date: 2021-09-23

  Online published: 2021-09-22

Supported by

National Key R&D Program of China(2019YFA0405300); National Natural Science Foundation of China(11872348, 11802297)

摘要

激波/湍流边界层干扰(STBLI)是航空航天领域中广泛存在的一种复杂流动现象,形成条件涵盖跨声速到高超声速,形成环境复杂多样,给飞行器的气动性能和结构安全性带来重大的影响。结合STBLI的典型流动图像介绍了干扰区的重要物理特征;总结了一些有代表性的STBLI流动控制技术的现状,分析了包括涡流发生器、电磁激励等控制技术的原理、效果及不足;探讨了STBLI流动控制研究中有待于进一步深入研究的问题和方向,为发展实用、高效、针对高超声速条件下的STBLI流动控制技术提供了理论支撑和技术储备。

本文引用格式

时晓天 , 吕蒙 , 赵渊 , 陶善聪 , 郝乐 , 袁湘江 . 激波/湍流边界层干扰的流动控制技术[J]. 航空学报, 2022 , 43(1) : 625929 -625929 . DOI: 10.7527/S1000-6893.2021.25929

Abstract

Shock wave/Turbulent Boundary Layer Interaction(STBLI) is ubiquitous presence in aircraft engineering. Occurring in the case from transonic to hypersonic, the complex linear and nonlinear mechanisms in the STBLI such as the flow separation, peak heating and low frequency pressure fluctuating can heavily affect the vehicle, inlet and component geometry, structural integrity, material selection, fatigue life and the design of thermal protection systems. Therefore, the flow control is considered as a key issue to adjust the flow field of STBLI. To deepen the understanding of STBLI and its flow control, the present paper conducted a comprehensive review on the important knowledge, mostly the flow control techniques such as vortex generator, plasma and magnetohydrodynamics for STBLI to improve the flow control design and troubleshooting of STBLI in engineering, especially in the case of hypersonic.

参考文献

[1] DOLLING D. 50 years of shock wave/boundary layer interactionresearch—What next?: AIAA-2000-2596[R]. Reston: AIAA, 2000.
[2] ANDREOPOULOS Y, AGUI J H, BRIASSULIS G. Shock wave-turbulence interactions[J]. Annual Review of Fluid Mechanics, 2000, 32(1): 309-345.
[3] GREEN J E. Interactions between shock waves and turbulent boundary layers[J]. Progress in Aerospace Sciences, 1970, 11: 235-340.
[4] CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layerinteractions[J]. Annual Review of Fluid Mechanics, 2014, 46(1): 469-492.
[5] ADAMSON T C, MESSITER A F. Analysis of two-dimensional interactions between shock waves and boundary layers[J]. Annual Review of Fluid Mechanics, 1980, 12(1): 103-138.
[6] SETTLES G, DODSON L. Hypersonic shock/boundary-layer interaction database: AIAA-1991-1763[R]. Reston: AIAA, 1991.
[7] PANARAS A G, LU F K. Micro-vortex generators for shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 74: 16-47.
[8] KRAL L D. Active flow control technology[R]. New York: ASME, 1998.
[9] 吴瀚, 王建宏, 黄伟, 等. 激波/边界层干扰及微型涡流发生器控制研究进展[J]. 航空学报, 2021, 42(6): 025371. WU H, WANG J H, HUANG W, et al. Research progress on shock wave/boundary layer interactions and flow controls induced by micro vortex generators[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 025371(in Chinese).
[10] DOLLING D S. Fluctuating loads in shock wave/turbulent boundary layer interaction:Tutorial and update: AIAA-1993-0284[R]. Reston: AIAA, 1993.
[11] CHAPMAN D R, KUEHN D M, LARSON H K. Investigation of separated flows in supersonic and subsonic stream with emphasis on the effect of transition: NACA-TN-3869[R]. Washington, D.C.: NACA, 1957.
[12] DEGREZ G, GINOUX J. Three-dimensional skewed shock wave laminar boundary layer interaction at Mach 2.25: AIAA-1983-1755[R]. Reston: AIAA, 1983.
[13] GRAMANN R A. Dynamics of separation and reattachment in a Mach 5 unswept compression ramp flow[D]. Austin: The University of Texas at Austin, 1989.
[14] GRAMANN R A, DOLLING D S. Dynamics of separation and reattachment in a Mach 5 compression ramp flow: AIAA-1990-0380[R]. Reston: AIAA, 1990.
[15] KISTLER A L. Fluctuating wall pressure under a separated supersonic flow[J]. The Journal of the Acoustical Society of America, 1964, 36(3): 543-550.
[16] DEGREZ G, GINOUX J J. Surface phenomena in a three-dimensional skewed shock wave/laminar boundary-layer interaction[J]. AIAA Journal, 1984, 22(12): 1764-1769.
[17] ERENGIL M E, DOLLING D. Separation shock motion and ensemble-averaged wall pressures in a Mach 5 compression ramp interaction: AIAA-1989-1853[R]. Reston: AIAA, 1989.
[18] KUSSOY M L, BROWN J D, BROWN J L, et al. Fluctuations and massive separation in three-dimensional shock wave/boundary layer interactions[C]//2nd International Symposium of Transport Phenomena in Turbulent Flows, 1987.
[19] MCCLURE W B, DOLLING D S. An experimental study of the driving mechanism and control of the unsteady shock-induced turbulent separation in a Mach 5 compression corner flow[D]. Austin: The University of Texas at Austin, 1992.
[20] ERENGIL M E, DOLLING D S. Physical causes of separation shock unsteadiness in shock wave/turbulent boundary layer interactions: AIAA-1993-3134[R]. Reston: AIAA, 1993.
[21] POZEFSKY P, BLEVINS R D, LAGANELLI A L. Thermo-vibro-acoustic loads and fatigue of hypersonic flight vehicle structure: AFWAL-TR-89-3014[R]. 1989.
[22] WANG J J, FENG L H. Flow control techniques and applications[M]. Cambridge: Cambridge University Press, 2018.
[23] ANDREOPOULOS J, MUCK K C. Some new aspects of the shock-wave/boundary-layer interaction in compression-ramp flows[J]. Journal of Fluid Mechanics, 1987, 180: 405-428.
[24] DOLLING D S, MURPHY M T. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield[J]. AIAA Journal, 1983, 21(12): 1628-1634.
[25] RINGUETTE M J, BOOKEY P, WYCKHAM C, et al. Experimental study of a Mach 3 compression ramp interaction at Reθ=2400[J]. AIAA Journal, 2009, 47(2): 373-385.
[26] KUSUNOSE K, YU N J. Vortex generator installation drag on an airplane near its cruise condition[J]. Journal of Aircraft, 2003, 40(6): 1145-1151.
[27] LIN J C. Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progress in Aerospace Sciences, 2002, 38(4-5): 389-420.
[28] ASHILL P, FULKER J, HACKETT K. Studies of flows induced by sub boundary layer vortex generators(SBVGs): AIAA-2002-0968[R]. Reston: AIAA, 2002.
[29] ANDERSON B, TINAPPLE J, SURBER L. Optimal control of shock wave turbulent boundary layer interactions using micro-array actuation: AIAA-2006-3197[R]. Reston: AIAA, 2006.
[30] LEE S. Large eddy simulation of supersonic boundary layer interaction control using micro-vortex generators[D]. Urbana-Champaign: University of Illinois at Urbana-Champaign, 2009.
[31] LEE S, LOTH E, BABINSKY H. Normal shock boundary layer control with various vortex generator geometries[J]. Computers & Fluids, 2011, 49(1): 233-246.
[32] BABINSKY H, LI Y, PITT FORD C W. Microramp control of supersonic oblique shock-wave/boundary-layer interactions[J]. AIAA Journal, 2009, 47(3): 668-675.
[33] PITT FORD C W, BABINSKY H. Micro-ramp control for oblique shock wave/boundary layer interactions: AIAA-2007-4115[R]. Reston: AIAA, 2007.
[34] SUN Z Z, SCARANO F, VAN OUDHEUSDEN B W, et al. Numerical and experimental investigations of the supersonic microramp wake[J]. AIAA Journal, 2014, 52(7): 1518-1527.
[35] BLINDE P L, HUMBLE R A, VAN OUDHEUSDEN B, et al. Effects of micro-ramps on a shock wave/turbulent boundary layer interaction[J]. Shock Waves, 2009, 19:507-520.
[36] LI Q, LIU C Q. Implicit LES for supersonicmicroramp vortex generator: New discoveries and new mechanisms[J]. Modelling and Simulation in Engineering, 2011, 2011: 934982.
[37] LIU C Q, SUN Z Z, WANG X, et al. The vortical structures in the rear separation and wake produced by a supersonic micro-ramp: AIAA-2013-0248[R]. Reston: AIAA, 2013.
[38] LU F, PIERCE A, SHIH Y. Experimental study of near wake of micro vortex generators in supersonic flow: AIAA-2010-4623[R]. Reston: AIAA, 2010.
[39] SUN Z, SCHRIJER F F J, SCARANO F, et al. The three-dimensional flow organization past a micro-ramp in a supersonic boundary layer[J]. Physics of Fluids, 2012, 24(5): 055105.
[40] WANG B, LIU W D, ZHAO Y X, et al. Experimental investigation of the micro-ramp based shock wave and turbulent boundary layer interaction control[J]. Physics of Fluids, 2012, 24(5): 055110.
[41] XUE D W, CHEN Z H, JIANG X H, et al. Numerical investigations on the wake structures of micro-ramp and micro-vanes[J]. Fluid Dynamics Research, 2014, 46(1): 015505.
[42] GALBRAITH M, ORKWIS P, BENEK J. Multi-row micro-ramp actuators for shock wave boundary-layer interaction control: AIAA-2009-0321[R]. Reston: AIAA, 2009.
[43] TROIA T, PATEL A, CROUSE D, et al. Passive device flow control for normal shock/boundary layer interactions in external compression inlets: AIAA-2011-3911[R]. Reston: AIAA, 2011.
[44] GIEPMAN R H M, SCHRIJER F F J, VAN OUDHEUSDEN B W. Flow control of an oblique shock wave reflection with micro-ramp vortex generators: Effects of location and size[J]. Physics of Fluids, 2014, 26(6): 066101.
[45] 杨光, 方剑, 陆利蓬, 等. MVG控制斜激波/湍流边界层干涉的大涡模拟[J]. 航空动力学报, 2018, 33(7): 1639-1646. YANG G, FANG J, LU L P, et al. Large-eddy simulation of MVG controlled oblique shockwave/turbulent boundary layer interaction[J]. Journal of Aerospace Power, 2018, 33(7): 1639-1646(in Chinese).
[46] YAN Y H, LIU C H. Further investigation on the physics of shock wave-vortex interaction in MVG controlled ramp flow: AIAA-2013-0401[R]. Reston: AIAA, 2013.
[47] CHERN S, LOBSER G, SCHOONMAKER M, et al. LES for separated supersonic turbulent boundary layer and shock interaction: AIAA-2014-0437[R]. Reston: AIAA, 2014.
[48] HOLDEN H, BABINSKY H. Effect of microvortex generators on seperated normal shock/boundary layer interactions[J]. Journal of Aircraft, 2007, 44(1): 170-174.
[49] 胡万林, 于剑, 刘宏康, 等. 叶片式涡流发生器对压缩拐角流动分离的控制[J]. 航空学报, 2018, 39(7): 122049. HU W L, YU J, LIU H K, et al. Control of compression ramp flow separation via vane vortex generator[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 122049(in Chinese).
[50] ZHANG Y, TAN H J, DU M C, et al. Control of shock/boundary-layer interaction for hypersonic inlets by highly swept microramps[J]. Journal of Propulsion and Power, 2014, 31(1): 133-143.
[51] 董祥瑞, 陈耀慧, 董刚, 等. 高超声速激波/边界层干扰及MVG阵列流动控制研究[J]. 工程力学, 2016, 33(7): 23-30. DONG X R, CHEN Y H, DONG G, et al. Studies on hypersonic shock wave/boundary layer interactions and flow control based on MVG array[J]. Engineering Mechanics, 2016, 33(7): 23-30(in Chinese).
[52] SUN Z. Micro ramps in supersonic turbulent boundary layer[D]. Delft: Delft University of Technology, 2014.
[53] RYBALKO M, BABINSKY H, LOTH E. VGs for a normal SBLI with a downstream diffuser: AIAA-2010-4464[R]. Reston: AIAA, 2010.
[54] TITCHENER N, BABINSKY H. Control of a shock-wave/boundary-layer interaction and subsequent subsonic diffuser using a combination of vortex generators and bleed: AIAA-2012-0274[R]. Reston: AIAA, 2012.
[55] TITCHENER N, BABINSKY H, LOTH E. The effects of various vortex generator configurations on a normal shock wave/boundary layer interaction: AIAA-2013-0018[R]. Reston: AIAA, 2013.
[56] LOTH E, BABINSKY H. A representative flowfield of external compression inlets and diffusers: AIAA-2009-0032[R]. Reston: AIAA, 2009.
[57] RYBALKO M, LOTH E, CHIMA R, et al. Micro-ramps for external-compression low-boom inlets: AIAA-2009-4206[R]. Reston: AIAA, 2009.
[58] PANARAS A G. Review of the physics of swept-shock/boundary layer interactions[J]. Progress in Aerospace Sciences, 1996, 32(2-3): 173-244.
[59] KNIGHT D, YAN H, PANARAS A G, et al. Advances in CFD prediction of shock wave turbulent boundary layer interactions[J]. Progress in Aerospace Sciences, 2003, 39(2-3): 121-184.
[60] GAITONDE D, KNIGHT D. Numerical investigation of bleed on three-dimensional turbulent interactions due to sharp fins[J]. AIAA Journal, 1991, 29(11): 1878-1885.
[61] MARTIS R R, MISRA A. Effect of height of microvortex generators on swept shock wave boundary layer interactions[J]. CEAS Aeronautical Journal, 2013, 4(3): 315-326.
[62] MARTIS R R, MISRA A, SINGH A. Effect of microramps on separated swept shock wave-boundary-layer interactions[J]. AIAA Journal, 2014, 52(3): 591-603.
[63] MOREAU E. Airflow control by non-thermal plasma actuators[J]. Journal of Physics D: Applied Physics, 2007, 40(3): 605.
[64] CORKE T C, ENLOE C L, WILKINSON S P. Dielectric barrier discharge plasma actuators for flow control[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 505-529.
[65] WANG J J, CHOI K S, FENG L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62: 52-78.
[66] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405(in Chinese).
[67] LEONOV S, BITYURIN V, SAVELKIN K, et al. The features of electro-discharge plasma control of high-speed gas flows: AIAA-2002-2180[R]. Reston: AIAA, 2002.
[68] GAN T, WU Y, SUN Z Z, et al. Shock wave boundary layer interaction controlled by surface arc plasma actuators[J]. Physics of Fluids, 2018, 30(5): 055107.
[69] TANG M X, WU Y, GUO S G, et al. Effect of the streamwise pulsed arc discharge array on shock wave/boundary layer interaction control[J]. Physics of Fluids, 2020, 32(7): 076104.
[70] WEBB N, CLIFFORD C, SAMIMY M. Control of oblique shock wave-boundary layer interactions using plasma actuators: AIAA-2012-2810[R]. Reston: AIAA, 2012.
[71] NARAYANASWAMY V, RAJA L L, CLEMENS N T. Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control[J]. AIAA Journal, 2010, 48(2): 297-305.
[72] NARAYANASWAMY V, RAJA L L, CLEMENS N T. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator[J]. Physics of Fluids, 2012, 24(7): 076101.
[73] YANG G, YAO Y F, FANG J, et al. Large-eddy simulation of shock-wave/turbulent boundary layer interaction and its control using sparkjet[J]. International Journal of Modern Physics: Conference Series, 2016, 42: 1660186.
[74] WANG H Y, LI J, JIN D, et al. Manipulation of ramp-induced shock wave/boundary layer interaction using a transverse plasma jet array[J]. International Journal of Heat and Fluid Flow, 2017, 67: 133-137.
[75] JIANG H, LIU J, LUO S C, et al. Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators[J]. Journal of Zhejiang University-Science A, 2020, 21(9): 745-760.
[76] KALRA C S, ZAIDI S H, MILES R B, et al. Shockwave-turbulent boundary layer interaction control using magnetically driven surface discharges[J]. Experiments in Fluids, 2011, 50(3): 547-559.
[77] BISEK N J, RIZZETTA D P, POGGIE J. Plasma control of a turbulent shock boundary-layer interaction[J]. AIAA Journal, 2013, 51(8): 1789-1804.
[78] ATKINSON M D, POGGIE J, CAMBEROS J A. Control of separated flow in a reflected shock interaction using a magnetically-accelerated surface discharge[J]. Physics of Fluids, 2012, 24(12): 126102.
[79] SOUVEREIN L J, DEBIÈVE J F. Effect of air jet vortex generators on a shock wave boundary layer interaction[J]. Experiments in Fluids, 2010, 49(5): 1053-1064.
[80] ALI M Y, ALVI F, MANISANKAR C, et al. Studies on the control of shock wave-boundary layer interaction using steady microactuators: AIAA-2011-3425[R]. Reston: AIAA, 2011.
[81] WHITE M E, LEE R E, THOMPSON M W, et al. Tangential mass addition for shock/boundary-layer interaction control in scramjet inlets[J]. Journal of Propulsion and Power, 1991, 7(6): 1023-1029.
[82] SMITH A N, BABINSKY H, FULKER J L, et al. Shock wave/boundary-layer interaction control using streamwise slots in transonic flows[J]. Journal of Aircraft, 2004, 41(3): 540-546.
[83] HAMED A, SHANG J S. Survey of validation data base for shockwave boundary-layer interactions in supersonic inlets[J]. Journal of Propulsion and Power, 1991, 7(4): 617-625.
[84] SHIH T I P. Control of shock-wave/boundary-layer interactionS by bleed[J]. International Journal of Fluid Machinery and Systems, 2008, 1(1): 24-32.
[85] SRIRAM R, JAGADEESH G. Shock tunnel experiments on control of shock induced large separation bubble using boundary layer bleed[J]. Aerospace Science and Technology, 2014, 36: 87-93.
[86] 董明, 赵慧勇. 超声速边界层中壁面抽吸对流动分离的抑制作用[J]. 气体物理, 2019, 4(2): 17-29. DONG M, ZHAO H Y. Suppression of flow separation by wall suction in supersonic boundary layers[J]. Physics of Gases, 2019, 4(2): 17-29(in Chinese).
[87] NAGAMATSU H, OROZCO R. Porosity effect on supercritical airfoil drag reduction by shock wave/boundary layer control: AIAA-1984-1682[R]. Reston: AIAA,1984.
[88] NAGAMATSU H, FICARRA R. Supercritical airfoil drag reduction by passive shock wave/boundary layer control in the Mach number range.75 to.90: AIAA-1985-0207[R]. Reston: AIAA, 1985.
[89] GILLAN M. Computational analysis of drag reduction and buffet alleviation in viscous transonic flow over porous airfoils: AIAA-1993-3419[R]. Reston: AIAA, 1993.
[90] GEFROH D, HAFENRICHTER E, MCILWAIN S, et al. Simulation and experimental analysis of a novel SBLI flow control system: AIAA-2000-2237[R]. Reston: AIAA, 2000.
[91] KIM S D, SONG D J. Numerical study on performance of supersonic inlets with various three-dimensional bumps[J]. Journal of Mechanical Science and Technology, 2008, 22(8): 1640-1647.
[92] OGAWA H, BABINSKY H, PÄTZOLD M, et al. Shock-wave/boundary-layer interaction control using three-dimensional bumps for transonic wings[J]. AIAA Journal, 2008, 46(6): 1442-1452.
[93] 张悦, 谭慧俊, 张启帆, 等. 一种进气道内激波/边界层干扰控制的新方法及其流动机理[J]. 宇航学报, 2012, 33(2): 265-274. ZHANG Y, TAN H J, ZHANG Q F, et al. A new method and its flow mechanism for control of shock/boundary layer interaction in hypersonic inlet[J]. Journal of Astronautics, 2012, 33(2): 265-274(in Chinese).
文章导航

/