固体力学与飞行器总体设计

高速水射流冲击下航空有机玻璃(PMMA)损伤行为

  • 王旋 ,
  • 徐金瑾 ,
  • 侯乃丹 ,
  • 李玉龙
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 陕西省冲击动力学及工程应用重点实验室, 西安 710072

收稿日期: 2021-07-06

  修回日期: 2021-08-02

  网络出版日期: 2021-08-25

基金资助

国家自然科学基金(11832015,51805538);陕西省自然科学基础研究计划(2020JQ-476);中国博士后科学基金(2020M683570,2021T140561)

Damage behavior of aeronautical perspex (PMMA) under high-velocity water jet impact

  • WANG Xuan ,
  • XU Jinjin ,
  • HOU Naidan ,
  • LI Yulong
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Shaanxi Key Laboratory of Impact Dynamics and its Engineering Application, Xi'an 710072, China

Received date: 2021-07-06

  Revised date: 2021-08-02

  Online published: 2021-08-25

Supported by

National Natural Science Foundation of China (11832015, 51805538); Natural Science Basis Research Plan in Shannxi Province of China (2020 JQ-476); China Postdoctoral Science Foundation (2020M683570, 2021T140561)

摘要

飞行器高速经过雨区时,风挡玻璃等部件容易受到雨滴的冲击侵蚀。为探究飞行器风挡玻璃的雨蚀损伤行为,基于一级轻气炮搭建了单射流冲击试验平台(SIJA),并对航空定向及非定向有机玻璃(聚甲基丙烯酸甲酯,PMMA)进行了不同速度的射流冲击试验。结果表明受高速射流冲击时,定向有机玻璃主要表现为面下分层的银纹损伤,而非定向有机玻璃主要表现为表面损伤。随着冲击速度不断提升,两种有机玻璃试样都出现了表面剥离损伤,且定向有机玻璃的剥离损伤更为严重。通过对试样内部应力波传播及损伤扩展的观察发现,定向有机玻璃面下分层为剪切波主导,且这一损伤模式更容易造成剥离,多次冲击后的试验结果也进一步证明了这一结论。同时根据聚偏二氟乙烯(PVDF)压电薄膜得到的冲击阶段冲量对损伤进行了评估与预测,发现损伤面积与冲量呈线性关系。

本文引用格式

王旋 , 徐金瑾 , 侯乃丹 , 李玉龙 . 高速水射流冲击下航空有机玻璃(PMMA)损伤行为[J]. 航空学报, 2022 , 43(12) : 226067 -226067 . DOI: 10.7527/S1000-6893.2021.26067

Abstract

When the high-speed aircraft flies through the rain field, the components such as windshield are susceptible to the impact of rain droplets. To investigate the damage behavior of windshield glass under rain droplets impact, a Single Impact Jet Apparatus (SIJA) was established based on the one-stage light-gas gun, and water jet impact tests were conducted on oriented and unoriented perspex (Polymethyl Methacrylate, PMMA) specimens. The results indicate that when impacted by the high-speed water jet, the main damage mode for the oriented perspex specimen is subsurface crazing fracture, while the main damage mode for the unoriented perspex specimen is surface damage. With increasing impingement velocity, peeling appears on the surface of both specimens, and is more severe for the oriented perspex specimen. Observation of the stress wave and damage propagation inside the samples finds that the subsurface delamination of the oriented perspex specimen is caused by the shear wave, and this damaged mode is more likely to cause peeling. This conclusion is further verified by multiple impact tests. The damage is also evaluated and predicted by the impulse obtained by the Polyvinylidene Fluoride (PVDF) piezoelectric film, and it is found that the damaged area is linear with the impulse.

参考文献

[1] COAD E J, PICKLES C, SEWARD C R, et al. The erosion resistance of infrared transparent materials[J]. Proceedings of the Royal Society of London Series A:Mathematical, Physical and Engineering Sciences, 1998, 454:213-238.
[2] COAD E J, PICKLES C S J, JILBERT G H, et al. Aerospace erosion of diamond and diamond coatings[J]. Diamond and Related Materials, 1996, 5(6-8):640-643.
[3] SEWARD C R, COAD E J, PICKLES C S J, et al. The liquid impact resistance of a range of IR-transparent materials[J]. Wear, 1995, 186-187:375-383.
[4] SEWARD C R, JAMES PICKLES C S, MARRAH R, et al. Rain erosion data on window and dome materials[J]. Window and Dome Technologies and Materials III, 1992:1760:280-290.
[5] ADLER W F, HOOKER S V. Water drop impact damage in zinc sulfide[J]. Wear, 1978, 48(1):103-119.
[6] FYALL A A. Practical aspects of rain erosion of aircraft and missiles[J]. Philosophical Transactions of the Royal Society of London A, 1966, 260(1110):161-167.
[7] FIELD J E, HAND R J, PICKLES C J. Strength and rain erosion studies of I.R. materials[J]. Window and Dome Technologies and Materials, 1989, 1112:306-315.
[8] 王综轶, 王元清, 杜新喜, 等. 有机玻璃(亚克力)的力学性能及其工程应用[C]//第十五届全国现代结构工程学术研讨会论文集. 北京:中国钢结构协会, 2015:1781-1790. WANG Z Y, WANG Y Q, DU X X, et al. Mechanical behavior and engineering application of PMMA[C]//Proceedings of the 15th National Symposium on Structural Engineering. Beijing:China Steel Construction Society, 2015:1781-1790(in Chinese).
[9] 邓小秋, 李志强, 赵隆茂, 等. 有机玻璃力学性能的研究现状[J]. 力学与实践, 2014, 36(5):540-550. DENG X Q, LI Z Q, ZHAO L M, et al. A review on mechanical behaviour of PMMA[J]. Mechanics in Engineering, 2014, 36(5):540-550(in Chinese).
[10] 郭伟国, 史飞飞. 不同载荷方式下MDYB-3有机玻璃的变形与破坏行为[J]. 航空学报, 2008, 29(6):1517-1525. GUO W G, SHI F F. Deformation and failure behavior of MDYB-3 oriented PMMA glass under different loading conditions[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1517-1525(in Chinese).
[11] 秦瑞祥, 欧迎春, 张保军, 等. YB-3与DYB-3航空有机玻璃综合性能对比[J]. 中国建材科技, 2011, 20(1):29-31, 54. QIN R X, OU Y C, ZHANG B J, et al. The contrast of competitive properties between YB-3 and DYB-3 aviation sheet[J]. China Building Materials Science & Technology, 2011, 20(1):29-31, 54(in Chinese).
[12] 张志林. 飞机座舱透明件设计理论及应用[D]. 南京:南京航空航天大学, 2005. ZHANG Z L. Design theory and application for transparency of aircraft canopy and windshield[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2005(in Chinese).
[13] FIELD J E. ELSI conference:Invited lecture-Liquid impact:Theory, experiment, applications[J]. Wear, 1999, 233-235:1-12.
[14] ADLER W F, BOLAND P L. Multiparticle supersonic impact test program[J]. Window and Dome Technologies and Materials II, 1990, 1326:268-279.
[15] TOBIN E F, YOUNG T M, RAPS D, et al. Comparison of liquid impingement results from whirling arm and water-jet rain erosion test facilities[J]. Wear, 2011, 271(9-10):2625-2631.
[16] ADLER W F. Rain impact retrospective and vision for the future[J]. Wear, 1999, 233-235:25-38.
[17] OBARA T, BOURNE N K, FIELD J E. Liquid-jet impact on liquid and solid surfaces[J]. Wear, 1995, 186-187:388-394.
[18] BOWDEN F P, BRUNTON J H. The deformation of solids by liquid impact at supersonic speeds[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1961, 263(1315):433-450.
[19] BOURNE N K, OBARA T, FIELD J E. High-speed photography and stress gauge studies of jet impact upon surfaces[J]. Philosophical Transactions of the Royal Society of London Series A:Mathematical, Physical and Engineering Sciences, 1997, 355(1724):607-623.
[20] 施红辉, FIELD J E. 高速液体撞击下固体材料内的应力波传播[J]. 中国科学G辑:物理学、力学、天文学, 2004, 34(5):577-590. SHI H H, FIELD J. Stress wave propagation in solid materials under high-speed liquid impact[J]. Science in China Series G:Physics, Mechanics & Astronomy, 2004, 34(5):577-590(in Chinese).
[21] BOWDEN F P, FIELD J E. The brittle fracture of solids by liquid impact, by solid impact, and by shock[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1964, 282(1390):331-352.
[22] SAHAYA GRINSPAN A, GNANAMOORTHY R. Impact force of low velocity liquid droplets measured using piezoelectric PVDF film[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2010, 356(1-3):162-168.
[23] LESSER M B, FIELD J E. The impact of compressible liquids[J]. Annual Review of Fluid Mechanics, 1983, 15:97-122.
[24] HEYMANN F J. On the shock wave velocity and impact pressure in high-speed liquid-solid impact[J]. Journal of Basic Engineering, 1968, 90(3):400-402.
[25] LU Y Y, HUANG F, LIU X C, et al. On the failure pattern of sandstone impacted by high-velocity water jet[J]. International Journal of Impact Engineering, 2015, 76:67-74.
[26] 孟一, 易伟建. PVDF应力传感器的设计、标定及其在混凝土冲击试验中的应用[J]. 湖南大学学报(自然科学版), 2009, 36(12):1-5. MENG Y, YI W J. Design and calibration of PVDF stress gauge and its application in the impact test of concrete[J]. Journal of Hunan University (Natural Sciences), 2009, 36(12):1-5(in Chinese).
[27] 陈洁. 定向有机玻璃层间剪切强度试验方法的分析与改进[J]. 甘肃联合大学学报(自然科学版), 2009, 23(6):29-33. CHEN J. Analysis and improvement of test method for laminar shearing strength of stretched acrylic[J]. Journal of Gansu Lianhe University (Natural Science Edition), 2009, 23(6):29-33(in Chinese).
[28] 范金娟, 张卫方, 陈新文. 定向有机玻璃的拉伸断裂行为研究[J]. 航空材料学报, 2006, 26(5):106-108. FAN J J, ZHANG W F, CHEN X W. Investigation of tensile fracture behavior of directional PMMA[J]. Journal of Aeronautical Materials, 2006, 26(5):106-108(in Chinese).
[29] GUJBA A K, HACKEL L, KEVORKOV D, et al. Water droplet erosion behaviour of Ti-6Al-4V and mechanisms of material damage at the early and advanced stages[J]. Wear, 2016, 358-359:109-122.
[30] WANG Y C, CHEN Y W. Application of piezoelectric PVDF film to the measurement of impulsive forces generated by cavitation bubble collapse near a solid boundary[J]. Experimental Thermal and Fluid Science, 2007, 32(2):403-414.
[31] ZHANG R Z, ZHANG B, LV Q, et al. Effects of droplet shape on impact force of low-speed droplets colliding with solid surface[J]. Experiments in Fluids, 2019, 60(4):64.
文章导航

/