电子电气工程与控制

临近空间飞行器北斗/INS高动态深组合导航方法

  • 孙洪驰 ,
  • 穆荣军 ,
  • 龙腾 ,
  • 李寿鹏 ,
  • 崔乃刚
展开
  • 哈尔滨工业大学 航天学院, 哈尔滨 150001

收稿日期: 2021-04-14

  修回日期: 2021-05-15

  网络出版日期: 2021-06-29

Beidou/INS high dynamic deeply integrated navigation of near-space vehicle

  • SUN Hongchi ,
  • MU Rongjun ,
  • LONG Teng ,
  • LI Shoupeng ,
  • CUI Naigang
Expand
  • School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

Received date: 2021-04-14

  Revised date: 2021-05-15

  Online published: 2021-06-29

摘要

针对临近空间飞行器高动态环境下组合导航量测噪声非高斯化问题, 利用闪烁噪声模型对量测噪声的非高斯特性进行建模, 然后在北斗/INS深组合模型的基础上采用一种基于Huber鲁棒核函数的容积卡尔曼滤波器(Huber CKF)的高动态环路跟踪方法和基于高度角自适应渐消因子的自适应深组合导航模型。首先, 针对临近空间环境建立了量测噪声闪烁模型, 模拟高超速环境下电离层闪烁特性对载波相位的影响; 其次, 用鲁棒滤波方法替代传统跟踪环路中的锁相环, 克服了传统鉴相器在非高斯噪声条件下跟踪精度下降的问题; 最后, 根据各通道卫星高度信息设计自适应渐消因子, 调节各通道量测信息权值占比, 能有效提高位置精度。仿真结果表明: 在惯性器件陀螺精度0.01 (°)/h、加计精度10-5g的情况下, 所提出的方法可将位置均方根(RMSE)精度提高0.288 4 m, 速度均方根精度提高0.018 7 m/s, 可以有效提高临近空间飞行器的导航精度, 为未来临近空间飞行器导航系统设计提供理论参考。

本文引用格式

孙洪驰 , 穆荣军 , 龙腾 , 李寿鹏 , 崔乃刚 . 临近空间飞行器北斗/INS高动态深组合导航方法[J]. 航空学报, 2022 , 43(9) : 325672 -325672 . DOI: 10.7527/S1000-6893.2021.25672

Abstract

For the problem that the navigation measurement noise of near-space vehicles becomes non-Gaussian in a high dynamic environment, a flicker noise model is used to simulate the non-Gaussian characteristics of measurement noise. Then, a high dynamic loop tracking method based on Huber Cubature Kalman Filter (Huber CKF) and an adaptive deeply integrated navigation model based on the altitude angle adaptive fading factor are presented on the basis of the Beidou/INS deeply integrated model. First, a flicker noise model is developed to simulate the effect of ionospheric flicker on the carrier phase in high-speed environments. Second, a robust filtering method is used to replace the phase-locked loop, which overcomes the problem that the accuracy of the phase discriminator is reduced under non-Gaussian noise conditions. Finally, an adaptive fading factor is designed based on the satellite altitude angle to adjust the weights of each channel, which can effectively improve the position accuracy. The simulation results show that the estimation accuracy in the position Root Mean Squared Error (RMSE) can be improved by 0.288 4 m, and the estimation accuracy in velocity RMSE can be improved by 0.018 7 m/s, when the measurement accuracy indicator of the gyroscope is 0.01 (°)/h and the measurement accuracy indicator of the accelerometer is 10-5 g. The methods presented in this paper can effectively improve the navigation accuracy of the near-space vehicle, and provide theoretical references for the navigation system of the near-space vehicle in the future.

参考文献

[1] LI X X, LI X, LIU G G, et al. Triple-frequency PPP ambiguity resolution with multi-constellation GNSS: BDS and Galileo[J]. Journal of Geodesy, 2019, 93(8): 1105-1122.
[2] PAN L, ZHANG X H, LI X X, et al. Satellite availability and point positioning accuracy evaluation on a global scale for integration of GPS, GLONASS, BeiDou and Galileo[J]. Advances in Space Research, 2019, 63(9): 2696-2710.
[3] TANG C P, HU X G, ZHOU S S, et al. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements[J]. Journal of Geodesy, 2018, 92(10): 1155-1169.
[4] CHAI D S. Study on the theory and method in integrated navigation of multi-constellation GNSS/INS[D]. Xuzhou: China University of Mining and Technology, 2020: 29-35 (in Chinese). 柴大帅. 多星座GNSS/INS组合导航理论与方法研究[D]. 徐州: 中国矿业大学, 2020: 29-35.
[5] LIANG J. Research on low-cost GNSS/INS integrated navigation[D]. Shanghai: Shanghai Ocean University, 2019: 23-25 (in Chinese). 梁健. 廉价GNSS/INS组合导航系统的研究[D]. 上海: 上海海洋大学, 2019: 23-25.
[6] HAN H Z, WANG J. Robust GPS/BDS/INS tightly coupled integration with atmospheric constraints for long-range kinematic positioning[J]. GPS Solutions, 2017, 21(3): 1285-1299.
[7] LI M Y. Study on key technologies of GNSS/INS deep coupled based on vector tracking[D]. Beijing: China Academy of Launch Vehicle Technology, 2019: 4-12 (in Chinese). 李明玉. 基于矢量跟踪的GNSS/INS深组合关键技术研究[D]. 北京: 中国运载火箭技术研究院, 2019: 4-12.
[8] LIU B Y. GNSS/MEMS INS deeply integrated navigation and its integrity monitoring[D]. Shanghai: Shanghai Jiao Tong University, 2019: 4-14 (in Chinese). 刘宝玉. GNSS/MEMS INS深组合导航及其完好性监测[D]. 上海: 上海交通大学, 2019: 4-14.
[9] REN Y F. Research on the key technology of receiving and processing the BDS B1C signal under highly dynamic environment[D]. Xi'an: National Time Service Center, Chinese Academy of Sciences, 2019: 2-9 (in Chinese). 任宇飞. 北斗B1C信号高动态接收处理关键技术研究[D]. 西安: 中国科学院大学(中国科学院国家授时中心), 2019: 2-9.
[10] JR SPILKER J J. Vector delay lock loop processing of radiolocation transmitter signals: US5398034[P]. 1995-03-14.
[11] LASHLEY M, BEVLY D M. Analysis of discriminator based vector tracking algorithms[J]. Proceedings of the National Technical Meeting of the Institute of Navigation, 2007: 570-576.
[12] HENKEL P, GIGER K, GUNTHER C. Multifrequency, multisatellite vector phase-locked loop for robust carrier tracking[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(4): 674-681.
[13] PANY T, KANIUTH R, EISSFELLER B. Deep integration of navigation solution and signal processing[C]//Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), 2005: 1095-1102.
[14] WON J H, DÖTTERBÖCK D, EISSFELLER B. Performance comparison of different forms of Kalman filter approaches for a vector-based GNSS signal tracking loop[J]. Navigation, 2010, 57(3): 185-199.
[15] XIAO Z B, TANG X M, PANG J, et al. The study of code tracking bias in vector delay lock loop[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2010, 40(5): 568-574 (in Chinese). 肖志斌, 唐小妹, 庞晶, 等. 矢量延迟锁定环码跟踪偏差产生机理研究[J]. 中国科学: 物理学力学天文学, 2010, 40(5): 568-574.
[16] ZHAO S, AKPS D. An open source GPS/GNSS vector tracking loop-implementation, filter tuning, and results[C]//Proceedings of the 2011 International Technical Meeting of The Institute of Navigation, 2011: 1293-1305.
[17] LONG T, MU R J, SU B Z, et al. Research on dual-antenna GPS/MEMS-INS deeply-integrated navigation approach[J]. Journal of Astronautics, 2021, 42(1): 92-102 (in Chinese). 龙腾, 穆荣军, 苏炳志, 等. 双天线GPS/MEMS-INS深组合导航方法研究[J]. 宇航学报, 2021, 42(1): 92-102.
[18] WU D W, JING J, LI H L. Influence of near space environment on hypersonic vehicle navigation system[J]. Aerodynamic Missile Journal, 2012(12): 73-80 (in Chinese). 吴德伟, 景井, 李海林. 临近空间环境对高超声速飞行器导航系统的影响分析[J]. 飞航导弹, 2012(12): 73-80.
[19] JIN K, CHEN S Y, MA X, et al. Review of simulation and control of plasma sheath of hypersonic vehicles in near-space[J]. Modern Applied Physics, 2020, 11(4): 3-16 (in Chinese). 金科, 陈思尧, 马昕, 等. 临近空间高超声速飞行器等离子鞘套模拟及调控研究进展[J]. 现代应用物理, 2020, 11(4): 3-16.
[20] YANG H J. Research on the acquisition and tracking algorithm of hypersonic aerocraft Beidou signal[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2016: 7-11 (in Chinese). 杨恒进. 高超声速飞行器北斗信号捕获与跟踪算法研究[D]. 南京: 南京邮电大学, 2016: 7-11.
[21] SUN P Y. Study on key techniques of the satellite navigation signals carrier tracking in the presence of ionospheric scintillation[D]. Changsha: National University of Defense Technology, 2017: 1-10 (in Chinese). 孙鹏跃. 卫星导航信号抗电离层闪烁载波跟踪关键技术研究[D]. 长沙: 国防科学技术大学, 2017: 1-10.
[22] REN Y. Study on electromagnetic scattering characteristics of hypersonic vehicle in plasma sheath[D]. Xi'an: Xidian University, 2020: 67-83 (in Chinese). 任弋. 等离子体鞘套中高超声速飞行器电磁散射特性研究[D]. 西安: 西安电子科技大学, 2020: 67-83.
[23] BÉNIGUEL Y. Global Ionospheric Propagation Model (GIM): A propagation model for scintillations of transmitted signals[J]. Radio Science, 2002, 37(3): 4-1.
[24] YEH K C, LIU C H. Radio wave scintillations in the ionosphere[J]. Proceedings of the IEEE, 1982, 70(4): 324-360.
[25] AARONS J. Global morphology of ionospheric scintillations[J]. Proceedings of the IEEE, 1982, 70(4): 360-378.
[26] WU D. Research on ionosphere scintillations based on space-based GNSS occultation sounding technology[D]. Beijing: National Space Science Center, Chinese Academy of Sciences, 2019: 4-6 (in Chinese). 吴迪. 基于天基GNSS掩星探测技术的电离层闪烁研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2019: 4-6.
[27] XIE G. Principles of GPS and receiver design[M]. Beijing: Publishing House of Electronics industry, 2017 (in Chinese). 谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2017.
[28] Interface specification for signal in space of BeiDou navigation satellite system—Part 1: Open service signal B1C: GB/T 39414.1-2020[S]. Beijing: State Administration for Market Regulation, Standardization administration, 2020: 30-35 (in Chinese). 北斗卫星导航系统空间信号接口规范第1部分: 公开服务信号B1C: GB/T 39414.1-2020[S]. 北京: 国家市场监督管理总局国家标准化管理委员会, 2020: 30-35.
[29] JASON L S, DAVID D, DAVID W. Periodic optimal cruise of an atmospheric vehicle[J]. Journal of Guidance, 1985, 8(16): 31-38.
文章导航

/