论文

飞发一体化算力体系及算力参数敏感性

  • 熊冰 ,
  • 范晓樯 ,
  • 魏金鹏 ,
  • 程杰 ,
  • 赵志刚
展开
  • 1. 国防科技大学 空天科学学院, 长沙 410073;
    2. 航空工业沈阳飞机设计研究所, 沈阳 110035

收稿日期: 2021-04-15

  修回日期: 2021-05-08

  网络出版日期: 2021-05-26

基金资助

国家自然科学基金(11872071);国防科技基础加强计划

Force accounting systems of aircraft/engine integration and force accounting parameter sensitivity analysis

  • XIONG Bing ,
  • FAN Xiaoqiang ,
  • WEI Jinpeng ,
  • CHENG Jie ,
  • ZHAO Zhigang
Expand
  • 1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;
    2. AVIC Shenyang Aircraft Design and Research Institute, Shenyang 110035, China

Received date: 2021-04-15

  Revised date: 2021-05-08

  Online published: 2021-05-26

Supported by

National Natural Science Foundation of China (11872071); National Defense Science and Technology Foundation Strengthening Plan

摘要

飞行器/发动机一体化是制约吸气式高超声速飞行器的核心和关键技术,本文针对高超声速飞发一体化构型开展了算力体系划分及算力参数敏感性研究。通过将一体化飞行器不同部件划分至气动和推进系统,研究了算力体系划分对气动/推进性能指标的影响,结果表明对于飞发一体化构型,在不同算力体系下表征的飞行器气动/推进性能可能存在较大差异,横向比较飞行器气动/推进性能必须在明确算力体系条件下进行。采用正交试验设计+方差分析的方法分析了飞行器算力对空域、速域、飞行姿态、气动热效应、真实气体效应5个因素的敏感性,结果表明壁面温度是影响飞行器轴向力计算的敏感参数,马赫数和攻角几乎影响所有气动指标。在研究范围内,雷诺数和气体比热比是飞行器气动性能的不敏感参数。

本文引用格式

熊冰 , 范晓樯 , 魏金鹏 , 程杰 , 赵志刚 . 飞发一体化算力体系及算力参数敏感性[J]. 航空学报, 2021 , 42(8) : 525808 -525808 . DOI: 10.7527/S1000-6893.2021.25808

Abstract

Integration of aircraft and engine is the core and key technology for air-breathing hypersonic aircraft. In this paper, propulsion system force accounting and sensitivity analysis are carried out for the typical integrated configurations. Firstly, the axisymmetric integrated aircraft with abdomen inlet and the integrated aircraft with back inlet wing-body fusion were designed. By dividing the different parts of the integrated aircraft into aerodynamic or propulsion systems, the influence of force accounting on the aerodynamic/propulsion performance is studied. The results show that the aerodynamic/propulsion performance of the aircraft characterized by different force accounting systems maybe quite different. Comparison of the aerodynamic/propulsion performance of the aircraft must be carried out with a clear force accounting system. By using the method of orthogonal experimental design + variance analysis, the sensitivity of the aircraft force accounting to five factors, including airspace, speed domain, flight attitude, aerothermal effect, and real gas effect, is analyzed. The results show that the wall temperature is a sensitive parameter that can affect the calculation of axial force of the aircraft, and the Mach number and the attack angle affect almost all aerodynamic indicators. In the research range, the Reynolds number and gas specific heat ratio are insensitive parameters of aircraft aerodynamic performance.

参考文献

[1] 蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京:科学出版社, 2012:1-20. CAI G B, XU D J. Hypersonic aircraft technologies[M]. Beijing:Science Press, 2012:1-20(in Chinese).
[2] SPRAVKA J J, JORRIS T R. Current hypersonic and space vehicle flight test instrumentation challenges[C]//AIAA Flight Testing Conference. Reston:AIAA, 2015:412tw-pa-15264.
[3] NEWBERRY C F, DRESSER H S, BYERLY J W, et al. The evaluation of forebody compression at hypersonic Mach numbers[C]//26th Aerospace Sciences Meeting. Reston:AIAA, 1988.
[4] 郭宇辰. SR-72高超声速无人侦察机三维重建及其气动特性分析[D]. 南京:南京航空航天大学, 2016. GUO Y C. Three-dimensions reconstruction and analysis of aerodynamic of SR-72 hypersonic unmanned reconnaissance aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).
[5] AGGARWAL R, LAKHARA K, SHARMA P B. et al. SABRE engine:Single stage to orbit rocket engine[J]. International Journal of Innovative Research in Science, Engineering and Technology, 2015, 10(4):10360-10366.
[6] 汪元, 王振国. 空气预冷发动机及微小通道流动传热研究综述[J]. 宇航学报, 2016, 37(1):11-20. WANG Y, WANG Z G. Review on precooled combined cycle engine and mini- and micro-channel flow heat transfer[J]. Journal of Astronautics, 2016, 37(1):11-20(in Chinese).
[7] CECERE D, GIACOMAZZI E, INGENITO A. A review on hydrogen industrial aerospace applications[J]. International Journal of Hydrogen Energy, 2014, 39(20):10731-10747.
[8] HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Washington, D.C.:AIAA, Inc., 1994:24-26.
[9] HANEY J W, BEAULIEU W D. Waverider inlet integration issues[C]//32nd Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1994.
[10] WEBSTER F, BUCY J. ASALM-PTV chin inlet technology overview:Advanced strategic air launched missile propulsion technology validation of integral rocket/ramjet[C]//15th Joint Propulsion Conference. Reston:AIAA, 1979.
[11] 李怡庆, 周驯黄, 朱呈祥, 等. 曲锥前体/三维内转进气道一体化设计与分析[J]. 航空动力学报, 2018, 33(1):87-96. LI Y Q, ZHOU X H, ZHU C X, et al. Integration design and analysis for curved conical forebody and three-dimensional inward turning inlet[J]. Journal of Aerospace Power, 2018, 33(1):87-96(in Chinese).
[12] SULLINS G, BILLIG F. Force accounting for airframe integrated engines[C]//23rd Joint Propulsion Conference. Reston:AIAA.
[13] LEHRACH R. Thrust/drag accounting for aerospace plane vehicles[C]//23rd Joint Propulsion Conference. Reston:AIAA, 1987.
[14] NUMBERS K. Hypersonic propulsion system force accounting[C]//29th Aerospace Sciences Meeting. Reston:AIAA, 1991.
[15] 罗世彬. 高超声速飞行器机体发动机一体化设计[M]. 北京:科学出版社, 2018:54-90. LUO S B. Integration design of hypersonic air-frame/engine[M]. Beijing:Science Press, 2017:54-90(in Chinese).
[16] BOWCUTT K G, SMITH T R, KOTHARIA P, et al. The hypersonic space and global transportation system:A concept for routine and affordable access to space[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies. Reston:AIAA, 2011.
[17] 中国人民解放军总装备部. 高超声速风洞气动力试验方法:GJB 4399-2002[S]. 北京:中国人民解放军总装备部, 2002. General Armament Department of the Chinese People's Liberation Army. Aerodynamic test method for hypersonic wind tunnel:GJB 4399-2002[S]. Beijing:General armament department of the Chinese People's Liberation Army, 2002(in Chinese).
[18] VUKOVIĆ D, DAMLJANOVIĆ D. HB-2 high-velocity correlation model at high angles of attack in supersonic wind tunnel tests[J]. Chinese Journal of Aeronautics, 2019, 32(7):1565-1576.
[19] HERRMANN C, KOSCHEL W. Experimental investigation of the internal compression inside a hypersonic intake[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston:AIAA, 2002.
[20] REINARTZ B U, HERRMANN C D, BALLMANN J, et al. Aerodynamic performance analysis of a hypersonic inlet isolator using computation and experiment[J]. Journal of Propulsion and Power, 2003, 19(5):868-875.
[21] GOLLAN R J, SMART M K. Design of modular shape-transition inlets for a conical hypersonic vehicle[J]. Journal of Propulsion and Power, 2013, 29(4):832-838.
[22] 吴颖川, 贺元元, 张小庆, 等. 超燃冲压发动机推力性能评估方法[J]. 推进技术, 2019, 40(1):26-32. WU Y C, HE Y Y, ZHANG X Q, et al. Assessment of scramjet engine thrust[J]. Journal of Propulsion Technology, 2019, 40(1):26-32(in Chinese).
[23] 何映平. 试验设计与分析[M]. 北京:化学工业出版社, 2013:46-48. HE Y P. Experimental design and analysis[M]. Beijing:Chemical Industry Press, 2013:46-48(in Chinese).
[24] 鞠胜军, 阎超, 叶志飞. 吸气式高超声速飞行器多参数灵敏度分析[J]. 北京航空航天大学学报, 2017, 43(5):927-934. JU S J, YAN C, YE Z F. Multi-parametric sensitivity analysis of air-breathing hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5):927-934(in Chinese).
[25] 杜双奎. 试验优化设计与统计分析[M]. 北京:科学出版社, 2019:161-180. DU S K. Experimental design and statistical analysis[M]. Beijing:Science Press, 2019:161-180(in Chinese).
文章导航

/