综述

机器学习在流动控制领域的应用及发展趋势

  • 任峰 ,
  • 高传强 ,
  • 唐辉
展开
  • 1. 香港理工大学 机械工程学系 流固耦合研究中心, 香港;
    2. 西北工业大学 航空学院, 西安 710072;
    3. 香港理工大学 深圳研究院, 深圳 518057

收稿日期: 2020-08-31

  修回日期: 2020-10-11

  网络出版日期: 2021-04-30

基金资助

Research Grants Council of Hong Kong under General Research Fund (15249316,15214418);PolyU Departmental General Research Fund(G-YBXQ);国家自然科学基金重大研究计划培育项目(91952107);国家自然科学基金青年项目(11902269)

Machine learning for flow control: Applications and development trends

  • REN Feng ,
  • GAO Chuanqiang ,
  • TANG Hui
Expand
  • 1. Research Center for Fluid-Structure Interactions, Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China;
    2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    3. Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China

Received date: 2020-08-31

  Revised date: 2020-10-11

  Online published: 2021-04-30

Supported by

Research Grants Council of Hong Kong under General Research Fund (15249316,15214418); PolyU Departmental General Research Fund (G-YBXQ); Training Program of the Major Research Plan of the National Natural Science Foundation of China (91952107);National Natural Science Foundation of China (11902269)

摘要

流动控制作为流体力学中的重要跨学科领域,一直是科学研究和工程应用关注的焦点之一。由于流动系统具有强非线性等复杂特征,对流动的控制尤其是闭环控制,一直颇富挑战性。近年来机器学习的迅速发展为许多学科带来了新的方法、新的视角和新的观点,对于流动控制领域亦是如此。通过回顾现阶段三类基于机器学习的流动控制方法,为主动流动控制领域的研究者展示机器学习在流动控制中应用的整体概况,进而勾勒出本领域的发展趋势。

本文引用格式

任峰 , 高传强 , 唐辉 . 机器学习在流动控制领域的应用及发展趋势[J]. 航空学报, 2021 , 42(4) : 524686 -524686 . DOI: 10.7527/S1000-6893.2020.24686

Abstract

As a multidisciplinary field in fluid mechanics, flow control has played a key role in both scientific research and engineering applications. Due to complicated features of flow systems such as strong nonlinearity, flow control, especially closed-loop control, has been a challenging issue in the past decades. Recently, the rapid developing machine learning has brought new methods, new perspectives, and new views to diverse fields, and also to flow control. This article reviews three distinct ideas that involve machine learning into flow control, so as to demonstrate an overall view of machine learning in flow control, and furthermore, to outline some trends for this field.

参考文献

[1] 马付良, 曾志翔, 高义民, 等. 仿生表面减阻的研究现状与进展[J]. 中国表面工程, 2016, 29(1):7-15. MA F L, ZENG Z X, GAO Y M, et al. Research status and progress of bionic surface drag reduction[J]. China Surface Engineering, 2016, 29(1):7-15(in Chinese).
[2] 刘沛清, 马利川, 屈秋林, 等. 低雷诺数下翼型层流分离泡及吹吸气控制数值研究[J]. 空气动力学学报, 2013, 31(4):518-524. LIU P Q, MA L C, QU Q L, et al. Numerical investigation of the laminar separation bubble control by blowing/suction on an airfoil at low Re number[J]. Acta Aerodynamica Sinica, 2013, 31(4):518-524(in Chinese).
[3] 罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, 35(2):221-234. LUO Z B, XIA Z X. Advances in synthetic jet technology and applications in flow control[J]. Advances in Mechanics, 2005, 35(2):221-234(in Chinese).
[4] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese).
[5] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016. ZHOU Z H. Machine learning[M]. Beijing:Tsinghua University Press, 2016(in Chinese).
[6] BRUNTON S L, NOACK B R, KOUMOUTSAKOS P. Machine learning for fluid mechanics[J]. Annual Review of Fluid Mechanics, 2020, 52(1):477-508.
[7] CAI S Z, ZHOU S C, XU C, et al. Dense motion estimation of particle images via a convolutional neural network[J]. Experiments in Fluids, 2019, 60(4):16.
[8] ZHU L, ZHANG W, KOU J, et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils[J]. Phys Fluids, 2019, 31(1):015105.
[9] DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual Review of Fluid Mechanics, 2019, 51(1):357-377.
[10] VIQUERAT J, RABAULT J, KUHNLE A, et al. Direct shape optimization through deep reinforcement learning[DB/OL]. arXiv preprint:190809885,2019.
[11] REN F, HU H B, TANG H. Active flow control using machine learning:A brief review[J]. Journal of Hydrodynamics, 2020, 32(2):247-253.
[12] RABAULT J, REN F, ZHANG W, et al. Deep reinforcement learning in fluid mechanics:A promising method for both active flow control and shape optimization[J]. Journal of Hydrodynamics, 2020, 32(2):234-246.
[13] 陈刚, 李跃明, 闫桂荣, 等. 基于降阶模型的气动弹性主动控制律设计[J]. 航空学报, 2010, 31(1):12-18. CHEN G, LI Y M, YAN G R, et al. Design of active control law for aeroelastic systems via reduced order models[J]. Acta Aeronautica et Aeronautica Sinica, 2010, 31(1):12-18(in Chinese).
[14] AHUJA S, ROWLEY C W. Feedback control of unstable steady states of flow past a flat plate using reduced-order estimators[J]. Journal of Fluid Mechanics, 2010, 645:447-478.
[15] FLINOIS T L B, MORGANS A S. Feedback control of unstable flows:a direct modelling approach using the eigensystem realisation algorithm[J]. Journal of Fluid Mechanics, 2016, 793:41-78.
[16] GAO C Q, ZHANG W W. Transonic aeroelasticity:A new perspective from the fluid mode[J]. Progress in Aerospace Sciences, 2020, 113:100596.
[17] GAO C, ZHANG W W, KOU J, et al. Active control of transonic buffet flow[J]. Journal of Fluid Mechanics, 2017, 824:312-351.
[18] GLAZ B, LIU L, FRIEDMANN P P. Reduced-order nonlinear unsteady aerodynamic modeling using a surrogate-based recurrence framework[J]. AIAA Journal, 2010, 48(10):2418-2429.
[19] LIU H J, HU H Y, ZHAO Y H, et al. Efficient reduced-order modeling of unsteady aerodynamics robust to flight parameter variations[J]. Journal of Fluids and Structures, 2014, 49:728-741.
[20] ZHANG W W, WANG B, YE Z Y, et al. Efficient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-order models[J]. AIAA Journal, 2012, 50(5):1019-1028.
[21] MANNARINO A, MANTEGAZZA P. Nonlinear aeroelastic reduced order modeling by recurrent neural networks[J]. Journal of Fluids and Structures, 2014, 48:103-121.
[22] WINTER M, BREITSAMTER C. Neurofuzzy-model-based unsteady aerodynamic computations across varying freestream conditions[J]. AIAA Journal, 2016,54(9):2705-2720.
[23] HUANG R, HU H Y, ZHAO Y. Nonlinear reduced-order modeling for multiple-input/multiple-output aerodynamic systems[J]. AIAA Journal, 2014, 52(6):1219-1231.
[24] KOU J, ZHANG W W, YIN M. Novel Wiener models with a time-delayed nonlinear block and their identification[J]. Nonlinear Dynamics, 2016, 85(4):2389-2404.
[25] MANNARINO A, DOWELL E H. Reduced-order models for computational-fluid-dynamics-based nonlinear aeroelastic problems[J]. AIAA Journal, 2015, 53(9):2671-2685.
[26] KOU J, ZHANG W W. Layered reduced-order models for nonlinear aerodynamics and aeroelasticity[J]. Journal of Fluids and Structures, 2017, 68:174-193.
[27] KOU J, ZHANG W. A hybrid reduced-order framework for complex aeroelastic simulations[J]. Aerospace science and technology, 2019, 84:880-894.
[28] LI K, KOU J, ZHANG W W. Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers[J]. Nonlinear Dynamics, 2019, 96(3):2157-77.
[29] HAN R, WANG Y, ZHANG Y, et al. A novel spatial-temporal prediction method for unsteady wake flows based on hybrid deep neural network[J]. Phys Fluids, 2019, 31(12):127101.
[30] WU H, LIU X J, AN W, et al. A deep learning approach for efficiently and accurately evaluating the flow field of supercritical airfoils[J]. Computers & Fluids, 2020, 198:104393.
[31] KOZA J R. Genetic programming:On the programming of computers by means of natural selection[M]. Cambridge:MIT Press, 1992.
[32] NOACK B, PONS-PRATS J, PERIAUX J, et al. Turbulent separated shear flow control by surface plasma actuator:Experimental optimization by genetic algorithm approach[J]. Experiments in Fluids, 2016, 57:22.
[33] MINELLI G, DONG T, NOACK B, et al. Upstream actuation for bluff-body wake control driven by a genetically inspired optimization[J]. Journal of Fluid Mechanics, 2020, 893:A1.
[34] NAGARAJ B, MURUGANANTH N. A comparative study of PID controller tuning using GA, EP, PSO and ACO[C]//Proceedings of the 2010 International Conference On Communication Control And Computing Technologies, 2010.
[35] GAUTIER N, AIDER J L, DURIEZ T, et al. Closed-loop separation control using machine learning[J]. Journal of Fluid Mechanics, 2015, 770:442-457.
[36] PAREZANOVIĆ V, LAURENTIE J C, FOURMENT C, et al. Mixing layer manipulation experiment from open-loop forcing to closed-loop machine learning control[J]. Flow Turbulence and Combustion, 2015, 94(1):155-173.
[37] PAREZANOVIĆ V, CORDIER L, SPOHN A, et al. Frequency selection by feedback control in a turbulent shear flow[J]. Journal of Fluid Mechanics, 2016, 797:247-283.
[38] LI R Y, NOACK B R, CORDIER L, et al. Drag reduction of a car model by linear genetic programming control[J]. Experiments in Fluids, 2017, 58:103.
[39] ZHOU Y, FAN D, ZHANG B, et al. Artificial intelligence control of a turbulent jet[DB/OL]. arXiv preprint:200504650,2020.
[40] WU Z, FAN D W, ZHOU Y, et al. Jet mixing optimization using machine learning control[J]. Experiments in Fluids, 2018, 59:131.
[41] REN F, WANG C L, TANG H. Active control of vortex-induced vibration of a circular cylinder using machine learning[J]. Phys Fluids, 2019, 31(9):093601.
[42] ABIODUN O I, JANTAN A, OMOLARA A E, et al. State-of-the-art in artificial neural network applications:A survey[J]. Heliyon, 2018, 4(11):e00938.
[43] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587):484-489.
[44] SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of go without human knowledge[J]. Nature, 2017, 550(7676):354-359.
[45] FRANÇOIS-LAVET V, HENDERSON P, ISLAM R, et al. An introduction to deep reinforcement learning[DB/OL]. arXiv preprint:181112560, 2018.
[46] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540):529-533.
[47] GU S, HOLLY E, LILLICRAP T, et al. Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation, 2017.
[48] WANG P, CHAN C Y. Formulation of deep reinforcement learning architecture toward autonomous driving for on-ramp merge[C]//Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), 2017.
[49] LUSCH B, KUTZ J N, BRUNTON S L. Deep learning for universal linear embeddings of nonlinear dynamics[J]. Nature Communications, 2018, 9:4950.
[50] BRUNTON S L, NOACK B R. Closed-loop turbulence control:progress and challenges[J]. Applied Mechanics Reviews, 2015, 67(5):050801.
[51] LEE C, KIM J, BABCOCK D, et al. Application of neural networks to turbulence control for drag reduction[J]. Phys Fluids, 1997, 9(6):1740.
[52] CHOI H, MOIN P, KIM J. Active turbulence control for drag reduction in wall-bounded flows[J]. Journal of Fluid Mechanics, 1994, 262:75-110.
[53] 许春晓. 壁湍流相干结构和减阻控制机理研究[J]. 力学进展, 2015, 45:201504. XU C X. Coherent structures and drag reduction mechanism in wall turbulence[J]. Advances in Mechanics, 2015, 45:201504(in Chinese).
[54] 杨歌. 主动凹坑变形湍流减阻控制方案研究[D]. 北京:清华大学, 2009. YANG G. Study on control schemes for turbulence drag reduction by active dimple deformation[D]. Beijing:Tsinghua University, 2009(in Chinese).
[55] 侯宏, 杨建华. RBF网络用于边界层转捩中抽吸流优化控制[J]. 航空学报, 2002, 23(6):556-559. HOU H, YANG J H. Plant edentification in active control of laminar boundary layer transition by suction using RBF neural network[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(6):556-559(in Chinese).
[56] RABAULT J, KUCHTA M, JENSEN A, et al. Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control[J]. Journal of Fluid Mechanics, 2019, 865:281-302.
[57] RABAULT J, KUHNLE A. Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach[J]. Phys Fluids, 2019, 31(9):094105.
[58] TANG H, RABAULT J, KUHNLE A, et al. Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning[J]. Phys Fluids, 2020, 32(5):053605.
[59] REN F, RABAULT J, TANG H. Applying deep reinforcement learning to active flow control in turbulent conditions[DB/OL]. arXiv preprint:2006.10683, 2020.
[60] REN F, TANG H. Bluff body uses deep-reinforcement-learning trained active flow control to achieve hydrodynamic stealth[DB/OL]. arXiv preprint:2010.10429, 2020.
[61] BODENSCHATZ E, PESCH W, AHLERS G. Recent developments in Rayleigh-Bénard convection[J]. Annual Review of Fluid Mechanics, 2000, 32(1):709-778.
[62] LOHSE D, XIA K Q. Small-scale properties of turbulent Rayleigh-Bénard convection[J]. Annual Review of Fluid Mechanics, 2010, 42:335-364.
[63] BEINTEMA G, CORBETTA A, BIFERALE L, et al. Controlling rayleigh-bénard convection via reinforcement learning[DB/OL]. arXiv preprint:200314358, 2020.
[64] CICHOS F, GUSTAVSSON K, MEHLIG B, et al. Machine learning for active matter[J]. Nature Machine Intelligence, 2020, 2(2):94-103.
[65] REDDY G, CELANI A, SEJNOWSKI T J, et al. Learning to soar in turbulent environments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(33):E4877-E4884.
[66] VERMA S, NOVATI G, KOUMOUTSAKOS P. Efficient collective swimming by harnessing vortices through deep reinforcement learning[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(23):5849-5854.
[67] COLABRESE S, GUSTAVSSON K, CELANI A, et al. Flow navigation by smart microswimmers via reinforcement learning[J]. Physical Review Letters, 2017, 118(15):158004.
[68] POGGIO T, MHASKAR H, ROSASCO L, et al. Why and when can deep-but not shallow-networks avoid the curse of dimensionality:A review[J]. International Journal of Automation and Computing, 2017, 14(5):503-519.
文章导航

/