论文

激光增材制造高强高韧TC11钛合金力学性能及航空主承力结构应用分析

  • 张纪奎 ,
  • 孔祥艺 ,
  • 马少俊 ,
  • 刘栋 ,
  • 王新波 ,
  • 冯军 ,
  • 王华明
展开
  • 1. 北京航空航天大学 大型金属构件增材制造国家工程实验室, 北京 100083;
    2. 北京航空航天大学 前沿科学技术创新研究院, 北京 100083;
    3. 北京航空航天大学 航空科学与工程学院, 北京 100083;
    4. 中国航发北京航空材料研究院, 北京 100095;
    5. 北京煜鼎增材制造研究院有限公司, 北京 100096;
    6. 航空工业第一飞机设计研究院, 西安 710089

收稿日期: 2021-03-01

  修回日期: 2021-03-19

  网络出版日期: 2021-04-29

基金资助

国家自然科学基金(51775018);航空科学基金(2016ZA51008)

Laser additive manufactured high strength-toughness TC11 titanium alloy: Mechanical properties and application in airframe load-bearing structure

  • ZHANG Jikui ,
  • KONG Xiangyi ,
  • MA Shaojun ,
  • LIU Dong ,
  • WANG Xinbo ,
  • FENG Jun ,
  • WANG Huaming
Expand
  • 1. National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, Beihang University, Beijing 100083, China;
    2. Research Institute of Frontier Science, Beihang University, Beijing 100083, China;
    3. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China;
    4. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
    5. Beijing Yuding Advanced Materials & Manufacturing Technologies Co, Ltd., Beijing 100096, China;
    6. AVIC the First Aircraft Institute, Xi'an 710089, China

Received date: 2021-03-01

  Revised date: 2021-03-19

  Online published: 2021-04-29

Supported by

National Natural Science Foundation of China (51775018); Aeronautical Science Foundation of China (2016ZA51008)

摘要

随着损伤容限设计理念发展和轻量化要求提高,高强高韧钛合金逐渐成为航空装备关键主承力构件主要结构材料。激光增材制造制备钛合金大型主承力构件具有数字化、短周期、低成本等技术优势,特别是激光增材制造过程超常固态相变动力学条件为制备高强高韧钛合金提供了新的机会。本文根据航空主承力结构选材性能要求,对激光增材制造TC11钛合金静强度、疲劳和损伤容限特性进行测试与分析,在此基础上对其在航空主承力结构的应用前景进行分析。结果表明,激光增材制造TC11钛合金力学性能具有显著的高强高韧和低屈强比特征,其疲劳缺口敏感性和裂纹扩展速率低,性能分散性小,综合性能满足航空主承力结构选材要求。与目前航空主承力结构广泛应用的TC4-DT损伤容限型钛合金相比,激光增材制造TC11高强高韧钛合金损伤容限特性相当、疲劳性能有所改善、许用应力提高23%,结构具有进一步减重优势。激光增材制造TC11钛合金优异的强韧性匹配在提高结构许用应力的同时可避免大厚度结构发生脆性断裂,其低疲劳缺口敏感性和优异的疲劳裂纹扩展特性对于结构服役安全具有重要意义。

本文引用格式

张纪奎 , 孔祥艺 , 马少俊 , 刘栋 , 王新波 , 冯军 , 王华明 . 激光增材制造高强高韧TC11钛合金力学性能及航空主承力结构应用分析[J]. 航空学报, 2021 , 42(10) : 525430 -525430 . DOI: 10.7527/S1000-6893.2021.25430

Abstract

With the development of damage tolerance design concept and increasing requirement for lightweight, the high strength-toughness titanium alloy has been the main airframe material of load-bearing structure. Laser additive manufacturing has the advantages of digitization, short period and low cost in deposition of the large load bearing structure. Especially, the dynamics of solid phase transformation in the laser additive manufacturing process provide a new opportunity for the preparation of high strength-toughness titanium alloy. In this paper, the static strength, fatigue and damage tolerant properties of the laser additive manufactured TC11 titanium alloy were reported and analyzed according to the design requirements of airframe load-bearing structure. The prospects of using the alloy for the airframe load-bearing structure are then discussed. The results show that the alloy is characterized by high strength-toughness and low yield strength ratio. With low fatigue notch sensitivity, low fatigue crack growth rate and small dispersibility, the alloy can meet the requirements of mechanical properties of the airframe load-bearing structure. Compared with the damage tolerant TC4-DT titanium alloy that is now widely used for the airframe load-bearing structure, the laser additive manufactured TC11 titanium alloy shows similar damage tolerant properties, better fatigue performance, and improved static strength (by 23%). The excellent strength/toughness matching of the laser additive manufactured TC11 titanium alloy can avoid the occurrence of low stress brittle fracture in large thickness components, and low fatigue notch sensitivity and fatigue crack growth rate of the alloy are critical for ensuring service safety of the airframe load-bearing structure.

参考文献

[1] 颜鸣皋, 吴学仁, 朱知寿. 航空材料技术的发展现状与展望[J]. 航空制造技术, 2003, 46(12):19-25. YAN M G, WU X R, ZHU Z S. Recent progress and prospects for aeronautical material technologies[J]. Aeronautical Manufacturing Technology, 2003, 46(12):19-25(in Chinese).
[2] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698. WANG H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698(in Chinese).
[3] 王向明. 飞机新概念结构设计与工程应用[J]. 航空科学技术, 2020, 31(4):1-7. WANG X M. New concept structure design and engineering application of aircraft[J]. Aeronautical Science & Technology, 2020, 31(4):1-7(in Chinese).
[4] 曹春晓. 选材判据的变化与高损伤容限钛合金的发展[J]. 金属学报, 2002, 38(增刊1):4-11. CAO C X. Change of material selection criterion and development of high damage-tolerant titanium alloy[J]. Acta Metallurgica Sinica, 2002, 38(Suppl.1):4-11(in Chinese).
[5] 张纪奎, 郦正能, 邱志平, 等. 钛合金结构损伤容限设计可行性研究[J]. 航空学报, 2009, 30(4):763-767. ZHANG J K, LI Z N, QIU Z P, et al. Feasibility study on damage tolerance design of titanium alloys[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4):763-767(in Chinese).
[6] 王欢, 赵永庆, 辛社伟, 等. 高强韧钛合金热加工技术与显微组织[J]. 航空材料学报, 2018, 38(4):56-63. WANG H, ZHAO Y Q, XIN S W, et al. Review thermomechanical processing and microstructure of high strength-toughness titanium alloy[J]. Journal of Aeronautical Materials, 2018, 38(4):56-63(in Chinese).
[7] 常辉, 周廉, 王向东. 我国钛工业与技术进展及展望[J]. 航空材料学报, 2014, 34(4):37-43. CHANG H, ZHOU L, WANG X D. Development and future of Chinese titanium industry and technology[J]. Journal of Aeronautical Materials, 2014, 34(4):37-43(in Chinese).
[8] 王华明, 张述泉, 王韬, 等. 激光增材制造高性能大型钛合金构件凝固晶粒形态及显微组织控制研究进展[J]. 西华大学学报(自然科学版), 2018, 37(4):9-14. WANG H M, ZHANG S Q, WANG T, et al. Progress on solidification grain morphology and microstructure control of laser additively manufactured large titanium components[J]. Journal of Xihua University (Natural Science Edition), 2018, 37(4):9-14(in Chinese).
[9] RAO J H, STANFORD N. A survey of fatigue properties from wrought and additively manufactured Ti-6Al-4V[J]. Materials Letters, 2021, 283:128800.
[10] BISWAL R, ZHANG X, SYED A K, et al. Criticality of porosity defects on the fatigue performance of wire+arc additive manufactured titanium alloy[J]. International Journal of Fatigue, 2019, 122:208-217.
[11] LU S S, BAO R, WANG K, et al. Fatigue crack growth behaviour in laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy[J]. Materials Science and Engineering:A, 2017, 690:378-386.
[12] ZHANG J K, WANG X Y, PADDEA S, et al. Fatigue crack propagation behaviour in wire+arc additive manufactured Ti-6Al-4V:Effects of microstructure and residual stress[J]. Materials & Design, 2016, 90:551-561.
[13] 袁经纬, 李卓, 汤海波, 等. 热处理对激光增材制造TC4合金耐蚀性及室温压缩蠕变性能的影响[J]. 航空学报, 2021,42(10):524390 YUAN J W, LI Z, TANG H B, et al. Effect of heat treatment on corrosion resistance and room temperature compression creep of LAMed TC4 alloy[J]. Acta Aeronautica et Astronautica Sinica, 2021,42(10):524390(in Chinese).
[14] 卢颖, 汤海波, 王华明. 激光成形TC4钛合金亚临界退火组织及形成机制[J]. 材料热处理学报, 2012, 33(11):58-62. LU Y, TANG H B, WANG H M. Microstructure and forming mechanism of a laser melting deposited TC4 titanium alloy after sub-critical annealing[J]. Transactions of Materials and Heat Treatment, 2012, 33(11):58-62(in Chinese).
[15] LIU C M, TIAN X J, WANG H M, et al. Obtaining bimodal microstructure in laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J]. Materials Science and Engineering:A, 2014, 609:177-184.
[16] ZHU Y Y, LI J, TIAN X J, et al. Microstructure and mechanical properties of hybrid fabricated Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy by laser additive manufacturing[J]. Materials Science and Engineering:A, 2014, 607:427-434.
[17] 贺瑞军, 王华明. 激光沉积Ti-6Al-2Zr-Mo-V钛合金高周疲劳性能[J]. 航空学报, 2010, 31(7):1488-1493. HE R J, WANG H M. HCF properties of laser deposited Ti-6Al-2Zr-Mo-V alloy[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1488-1493(in Chinese).
[18] ZHU Y Y, LIU D, TIAN X J, et al. Characterization of microstructure and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Materials & Design, 2014, 56:445-453.
[19] WANG Y F, CHEN R, CHENG X, et al. Effects of microstructure on fatigue crack propagation behavior in a bi-modal TC11 titanium alloy fabricated via laser additive manufacturing[J]. Journal of Materials Science & Technology, 2019, 35(2):403-408.
[20] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料拉伸试验第1部分:室温试验方法:GB/T 228.1-2010[S]. 北京:中国标准出版社, 2011. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Metallic materials-Tensile testing-Part 1:Method of test at room temperature:GB/T 228.1-2010[S]. Beijing:Standards Press of China, 2011(in Chinese).
[21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料平面应变断裂韧度KIC试验方法:GB/T 4161-2007[S]. 北京:中国标准出版社, 2008. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Metallic materials-Determination of plane-strain fracture toughness:GB/T 4161-2007[S]. Beijing:Standards Press of China, 2008(in Chinese).
[22] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料疲劳试验轴向力控制方法:GB/T 3075-2008[S]. 北京:中国标准出版社, 2009. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Metallic materials-Fatigue testing-Axial-force-controlled method:GB/T 3075-2008[S]. Beijing:Standards Press of China, 2009(in Chinese).
[23] 国家质量技术监督局. 金属材料疲劳裂纹扩展速率试验方法:GB/T 6398-2000[S]. 北京:中国标准出版社, 2001. State Bureau of Quality and Technical Supervision of the People's Republic of China. Standard test method for fatigue crack growth rates of metallic materials:GB/T 6398-2000[S]. Beijing:Standards Press of China, 2001(in Chinese).
[24] 《中国航空材料手册》编委会. 中国航空材料手册(第二版第四卷:钛合金,铜合金)[M]. 北京:中国标准出版社, 2012:168-169. Editorial Committee of China Aviation Materials Manual. Handbook of Aeronautical Materials of China (Second edition, Volume 4:Titanium and copper superalloys)[M]. Beijing:China Standard Press, 2012:168-169(in Chinese).
[25] GVNTHER J, KREWERTH D, LIPPMANN T, et al. Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime[J]. International Journal of Fatigue, 2017, 94:236-245.
[26] SANAEI N, FATEMI A. Defects in additive manufactured metals and their effect on fatigue performance:A state-of-the-art review[J]. Progress in Materials Science, 2021, 117:100724.
[27] 胡志忠, 曹淑珍. 金属材料的有效应力集中系数预测[J]. 中国科学(A辑数学物理学天文学技术科学), 1993, 23(1):83-91. HU Z Z, CAO S Z. Prediction of effective stress concentration factor of metal materials[J]. Science in China, SerA, 1993, 23(1):83-91(in Chinese).
[28] 陈联国, 王文盛, 朱知寿, 等. 大规格损伤容限钛合金TC4-DT的研制及应用[J]. 航空学报, 2020, 41(6):523454. CHEN L G, WANG W S, ZHU Z S, et al. Development and application of large-scale damage tolerance titanium alloy TC4-DT[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):523454(in Chinese).
[29] WELLS R R. New alloys for advanced metallic fighter-wing structures[J]. Journal of Aircraft, 1975, 12(7):586-592.
[30] SHULTS J. Material selection and evaluation for advanced metallic aircraft structures[C]//15th Structural Dynamics and Materials Conference. Reston:AIAA, 1974.
[31] 程正坤, 廖日东, 李玉婷, 等. 表面形貌对应力集中系数的影响研究[J]. 北京理工大学学报, 2016, 36(3):231-236. CHENG Z K, LIAO R D, LI Y T, et al. Effect of surface topography on stress concentration factor[J]. Transactions of Beijing Institute of Technology, 2016, 36(3):231-236(in Chinese).
文章导航

/