多相流与反应流的机理、模型及其调控技术专栏

AECSC-JASMIN湍流燃烧仿真软件研发和检验

  • 王方 ,
  • 王煜栋 ,
  • 姜胜利 ,
  • 陈军 ,
  • 唐军 ,
  • 徐华胜 ,
  • 李象远 ,
  • 邢竞文 ,
  • 高东硕 ,
  • 金捷
展开
  • 1. 北京航空航天大学 能源与动力工程学院, 北京 100191;
    2. 北京应用物理与计算数学研究所, 北京 100088;
    3. 中物院高性能数值模拟软件中心, 北京 100088;
    4. 中国燃气涡轮研究院, 成都 610599;
    5. 四川大学 化学工程学院, 成都 610065

收稿日期: 2020-11-26

  修回日期: 2021-01-05

  网络出版日期: 2021-04-29

基金资助

国家重点研发计划(2017YFB0202400,2017YFB0202402)

Development and testing of AECSC-JASMIN turbulent combustion simulation software

  • WANG Fang ,
  • WANG Yudong ,
  • JIANG Shengli ,
  • CHEN Jun ,
  • TANG Jun ,
  • XU Huasheng ,
  • LI Xiangyuan ,
  • XING Jingwen ,
  • GAO Dongshuo ,
  • JIN Jie
Expand
  • 1. School of Energy and Power Engineering, Beihang University, Beijing 100191, China;
    2. Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
    3. CAEP Software Center for High Performance Numerical Simulation, Beijing 100088, China;
    4. China Gas Turbine Establishment, Chengdu 610599, China;
    5. School of Chemical Engineering, Sichuan University, Chengdu 610065, China

Received date: 2020-11-26

  Revised date: 2021-01-05

  Online published: 2021-04-29

Supported by

National Key Research and Development Program of China (2017YFB0202400, 2017YFB0202402)

摘要

航空发动机燃烧室几何结构复杂,湍流和化学反应存在强烈非线性相互作用,需要对流动和燃烧及其相互作用进行高精度高时空分辨率的刻画,目前燃烧室湍流燃烧数值模拟仍然是高难度的瓶颈问题之一。介绍了由北京航空航天大学航空发动机数值仿真研究中心、北京应用物理与计算数学研究所和中国工程物理研究院高性能数值模拟软件中心联合研发的AECSC-JASMIN软件主要框架、算法以及针对该软件的算例检验。在Sandia射流火焰、支板火焰和单头部燃烧室检验算例中,对比实验数据,射流和支板火焰预测结果与实验值一致;支板算例的平均相对误差在15%之内;单头部燃烧室模拟结果符合物理实际,总压损失与实验值基本吻合。说明AECSC-JASMIN软件可用于复杂结构高分辨率高精度湍流燃烧数值模拟。

本文引用格式

王方 , 王煜栋 , 姜胜利 , 陈军 , 唐军 , 徐华胜 , 李象远 , 邢竞文 , 高东硕 , 金捷 . AECSC-JASMIN湍流燃烧仿真软件研发和检验[J]. 航空学报, 2021 , 42(12) : 625003 -625003 . DOI: 10.7527/S1000-6893.2021.25003

Abstract

The complex geometry of the aero-engine combustion chambers and the strong nonlinear interaction between turbulence and chemical reactions require high precision characterization of the flow, combustion, and their interaction with high space-time resolution. Currently, the difficulty in numerical simulation of turbulent combustion in the combustion chamber remains one of the bottleneck problems. This article will introduce the main algorithm of the AECSC-JASMIN software, which is jointly developed by the Aeroengine Numerical Simulation Research Center of Beihang University, Institute of Applied Physics and Computational Mathematics, and CAEP Software Center for High-Performance Numerical Simulation, as well as the example verification of the software. It will be tested with Sandia`s jet flame, concave strut flame-holder, and single-head combustion chamber. Compared with the experimental data, the prediction results of the jet and concave strut flame-holder are consistent with the experimental values, with an average relative error within 15%. The simulation results of the single-head combustion chamber conform to the physical reality, and the total pressure loss is consistent with the experimental value. Therefore, AECSC-JASMIN software can be used for numerical simulation of high-resolution and high-precision turbulent combustion in complex structures.

参考文献

[1] JONES W P, MARQUIS A J, WANG F. Large eddy simulation of a premixed propane turbulent bluff body flame using the Eulerian stochastic field method[J]. Fuel, 2015, 140:514-525.
[2] 曾家, 金捷, 张晟, 等. 基于LES-PDF方法的双旋流模型燃烧室数值模拟[J]. 气体物理, 2019, 4(5):52-64. ZENG J, JIN J, ZHANG S, et al. Numerical simulation of double-swirled model combustor based on LES-PDF[J]. Physics of Gases, 2019, 4(5):52-64(in Chinese).
[3] WANG F, LIU R, DOU L, et al. A dual timescale model for micro-mixing and its application in LES-TPDF simulations of turbulent nonpremixed flames[J]. Chinese Journal of Aeronautics, 2019, 32(4):875-887.
[4] 任健, 魏军侠, 曹小林. 基于JASMIN框架的辐射流体与粒子输运耦合计算[J]. 计算物理, 2012, 29(2):205-212. REN J, WEI J X, CAO X L. Composition computation of radiation hydrodynamics and particle transport based on JASMIN[J]. Chinese Journal of Computational Physics, 2012, 29(2):205-212(in Chinese).
[5] 程汤培, 雷伟, 衷斌, 等. 三维中子/光子输运SN程序的并行重构[J]. 核动力工程, 2014, 35(增刊2):147-150. CHENG T P, LEI W, ZHONG B, et al. Reconstruction and parallelization of 3D SN program for neutron/photon transport[J]. Nuclear Power Engineering, 2014, 35(Sup 2):147-150(in Chinese).
[6] 曹小林, 莫则尧, 刘旭, 等. 基于JASMIN框架的快速多极子并行解法器[J]. 中国科学:信息科学, 2010, 40(9):1187-1196. CAO X L, MO Z Y, LIU X, et al. A fast multipole parallel resolver based on JASMIN framework[J]. Scientia Sinica (Informationis), 2010, 40(9):1187-1196(in Chinese).
[7] 左风丽, 刘旭, 张宝印, 等. 基于JASMIN三维势场快速多极子算法的并行实现[J]. 计算物理, 2013, 30(1):140-147. ZUO F L, LIU X, ZHANG B Y, et al. Parallel implementation of fast multipole methods for three-dimensional potential fields on JASMIN[J]. Chinese Journal of Computational Physics, 2013, 30(1):140-147(in Chinese).
[8] 莫妲, 程明, 万斌, 等. 三旋流燃烧室的数值模拟与试验[J]. 航空动力学报, 2017, 32(11):2568-2575. MO D, CHENG M, WAN B, et al. Numerical simulation and experiment of triple swirler combustor[J]. Journal of Aerospace Power, 2017, 32(11):2568-2575(in Chinese).
[9] 丁勇能, 田勇, 王波, 等. 某重型燃气轮机DLN燃烧室数值模拟-热态分析[J]. 燃气轮机技术, 2019, 32(2):40-43, 51. DING Y N, TIAN Y, WANG B, et al. Numerical investigation of the DLN combustor of a heavy gas turbine-hot flow field analysis[J]. Gas Turbine Technology, 2019, 32(2):40-43, 51(in Chinese).
[10] 刘晓恒, 周成华, 宋满祥, 等. 基于通流方法的某涡喷发动机整机数值仿真[J]. 航空学报, 2020, 41(1):123199. LIU X H, ZHOU C H, SONG M X, et al. Overall simulation of a turbojet engine based on throughflow method[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):123199(in Chinese).
[11] 王年华, 常兴华, 赵钟, 等. 非结构CFD软件MPI+OpenMP混合并行及超大规模非定常并行计算的应用[J]. 航空学报, 2020, 41(10):123859. WANG N H, CHANG X H, ZHAO Z, et al. Implementation of hybrid MPI+OpenMP parallelization on unstructured CFD solver and its applications in massive unsteady simulations[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10):123859(in Chinese).
[12] ZHOU Y, LE J L, HUANG Y. LES of combustion flow field in a practical aeroengine combustor with two-stage counter-rotating swirler[J]. Journal of Propulsion Technology, 2018, 39(7):1576-1589.
[13] JABERI F A, COLUCCI P J, JAMES S, et al. Filtered mass density function for large-eddy simulation of turbulent reacting flows[J]. Journal of Fluid Mechanics, 1999, 401:85-121.
[14] PESKIN C S. Flow patterns around heart valves:A numerical method[J]. Journal of Computational Physics, 1972, 10(2):252-271.
[15] PESKIN C S. Numerical analysis of blood flow in the heart[J]. Journal of Computational Physics, 1977, 25(3):220-252.
[16] PESKIN C S. The immersed boundary method[J]. Acta Numerica, 2002, 11:479-517.
[17] LUTZ A E, KEE R J, GRCAR J F, et al. OPPDIF:A Fortran program for computing opposed-flow diffusion flames:SAND-96-8243[R]. Oak Ridge:Office of Scientific and Technical Information (OSTI), 1997.
[18] BARLOW R S, FRANK J H. Effects of turbulence on species mass fractions in methane/air jet flames[J]. Symposium (International) on Combustion, 1998, 27(1):1087-1095.
文章导航

/