流体力学与飞行力学

定黏假设"对伴随系统求解和梯度精度影响

  • 吴航空 ,
  • 王丁喜 ,
  • 黄秀全 ,
  • 徐慎忍
展开
  • 西北工业大学 动力与能源学院, 西安 710072

收稿日期: 2021-03-17

  修回日期: 2021-04-22

  网络出版日期: 2021-04-27

基金资助

国家科技重大专项(2017-Ⅱ-009-0023);西北工业大学博士论文创新基金(CX2022045)

Influence of “frozen viscosity assumption” on solution and gradient accuracy of adjoint system

  • WU Hangkong ,
  • WANG Dingxi ,
  • HUANG Xiuquan ,
  • XU Shenren
Expand
  • School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2021-03-17

  Revised date: 2021-04-22

  Online published: 2021-04-27

Supported by

National Science and Technology Major Project (2017-Ⅱ-009-0023); Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX2022045)

摘要

定黏假设"的引入能简化伴随方程的推导及流场求解器的子程序微分过程,但同时会引起灵敏度计算误差,有时甚至导致求解的不稳定性。为了探讨层流和湍流黏性系数对伴随灵敏度计算精度的影响程度,分别研究了3种不同定黏方法:冻结层流黏性系数方法(FLV),冻结湍流黏性系数方法(FEV)和同时冻结层流及湍流黏性系数方法(FLEV)。首先基于代数形式的主方程和目标函数详细推导了完全湍流及3种不同定黏方法所对应的伴随方程;然后介绍如何利用自动微分软件开发相应离散伴随求解器并给出流程图;最后以跨声速NASA Rotor 67为研究对象,通过与线化求解器和完全湍流伴随求解器的结果进行对比,分析研究不同工况(最高效率点及近失速点)下"定黏假设"方法对离散伴随系统求解稳定性、灵敏度收敛性、灵敏度精度及残差的渐近收敛率的影响。

本文引用格式

吴航空 , 王丁喜 , 黄秀全 , 徐慎忍 . 定黏假设"对伴随系统求解和梯度精度影响[J]. 航空学报, 2022 , 43(7) : 125512 -125512 . DOI: 10.7527/S1000-6893.2021.25512

Abstract

The introduction of the "frozen viscosity assumption" can simplify the derivation of the adjoint equation and the differentiation of flow solver subroutines, but can also lead to computational errors of sensitivities and sometimes even solution instability. To investigate the effect of laminar viscosity and eddy viscosity on computational accuracy of sensitivities, this paper presents a study on three different frozen viscosity approaches:the Frozen Laminar Viscosity approach(FLV), Frozen Eddy Viscosity approach(FEV) and Frozen Laminar and Eddy Viscosity approach(FLEV). First, the adjoint equations corresponding to full turbulence and three different frozen viscosity approaches are derived based upon the nonlinear flow equations and the objective function in an algebraic form. Then, we introduce how to use the algorithm differentiation tool to develop the discrete adjoint solver and provide the corresponding flow charts. Finally, the transonic NASA Rotor 67 is used to study the effects of different frozen viscosity approaches on solution stability, sensitivity convergence, sensitivity accuracy and asymptotic convergence rate of residual at different operating points(a peak efficiency point and a near stall point) of the adjoint solver. The results are compared with those of the linear solver and the adjoint solver with full turbulence.

参考文献

[1] SAMAD A, KIM K, GOEL T, et al. Multi-objective optimization of transonic compressor blade using evolutionary algorithm[J]. Journal of Propulsion and Power, 2008, 24(2):302-310.
[2] NIELSEN E, KLEB B. Efficient construction of discrete adjoint operators on unstructured grids using complex variables[J]. AIAA Journal, 2005, 44(4):44-60.
[3] JAMESON A. A perspective on computational algorithms for aerodynamic analysis and design[J]. Progress in Aerospace Sciences, 2001, 37(2):197-243.
[4] IOLLO A, FERLAUTO M, ZANNETTI L. An aerodynamic optimization method based on the inverse problem adjoint equations[J]. Journal of Computational Physics, 2001, 173(1):87-115.
[5] JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3):233-260.
[6] JAMESON A, MARTINELLI L, PIERCE N A. Optimum aerodynamic design using the Navier-Stokes equations[J]. Theoretical and Computational Fluid Dynamics, 1998, 10(1-4):213-237.
[7] WANG D X, HE L. Adjoint aerodynamic design optimization for blades in multistage turbomachines-part I:Methodology and verification[J]. Journal of Turbomachinery, 2010, 132(2):021011.1-021011.14.
[8] WANG D X, HE L, LI Y S, et al. Adjoint aerodynamic design optimization for blades in multistage turbomachines-part II:Validation and application[J]. Journal of Turbomachinery, 2010, 132(2):021012.1-021012.11.
[9] LUO J Q, ZHOU C, LIU F. Multipoint design optimization of a transonic compressor blade by using an adjoint method[J]. Journal of Turbomachinery, 2014, 136(5):051005.1-051005.10.
[10] DWIGHT R P, BREZILLON J. Efficient and robust algorithms for solution of the adjoint compressible Navier-Stokes equations with applications[J]. International Journal for Numerical Methods in Fluids, 2009, 60(4):365-389.
[11] KIM H, NAKAHASHI K, OBAYASHI S, et al. Aerodynamic optimization of supersonic transport wing using unstructured adjoint method[J]. AIAA Journal, 2001, 39(6):1011-1020.
[12] MAVRIPLIS D J. Multigrid solution of the discrete adjoint for optimization problems on unstructured meshes[J]. AIAA Journal, 2006, 44(1):42-50.
[13] NADARAJAH S, JAMESON A. A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization[J]. Canadian Journal of Earth Sciences, 2013, 43(43):1445-1466.
[14] MA C, SU X R, YUAN X. An efficient unsteady adjoint optimization system for multistage turbomachinery[J]. Journal of Turbomachinery, 2017, 139(1):011003.1-011003.11.
[15] HUANG H, EKICI K. A discrete adjoint harmonic balance method for turbomachinery shape optimization[J]. Aerospace Science and Technology, 2014, 39(1):481-490.
[16] VITALE S, PINI M, COLONNA P. Multistage turbomachinery design using the discrete adjoint method within the open-source software SU2[J]. Journal of Propulsion and Power, 2020, 36(3):465-478.
[17] RUBINO A, VITALE S, COLONNA P, et al. Fully-turbulent adjoint method for the unsteady shape optimization of multi-row turbomachinery[J]. Aerospace Science and Technology, 2020, 106(1):132-144.
[18] ALBRING T A, SAGEBAUM M, GAUGER N R. Efficient aerodynamic design using the discrete adjoint method in SU2[C]//17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston:AIAA, 2016:3518.
[19] GILES M B, DUTA M C, MULLER J D, et al. Algorithm developments for discrete adjoint methods[J]. AIAA Journal, 2003, 41(2):198-205.
[20] 张朝磊,厉海涛,丰镇平.基于离散伴随方法的透平叶栅气动优化设计[J].工程热物理学报, 2012, 33(1):47-50. ZHANG C L, LI H T, FENG Z P. Aerodynamic optimization design of turbomachinery cascade based on discrete adjoint method[J]. Journal of Engineering Thermophysics, 2012, 33(1):47-50(in Chinese).
[21] 罗佳奇,杨婧.基于伴随方法的单级低速压气机气动设计优化[J].航空学报, 2020, 41(5):623368. LUO J Q, YANG J. Aerodynamic design optimization of a single low-speed compressor stage by an adjoint method[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):623368(in Chinese).
[22] 马灿,苏欣荣,袁新.单级跨音压气机非定常伴随气动优化[J].工程热物理学报, 2017, 38(3):504-508. MA C, SU X R, YUAN X. Unsteady adjoint aerodynamic optimization of a transonic compressor stage[J]. Journal of Engineering Thermophysics, 2017, 38(3):504-508(in Chinese).
[23] STRAZISAR A, POWELL J. Laser anemometer measurements in a transonic axial flow compressor rotor:NASA Technical Report 2879[R]. Washington, D.C.:NASA, 1989.
[24] DENTON J D. The calculation of three-dimensional viscous flow through multistage turbomachines[J]. Journal of Turbomachinery, 1992, 114(1):18-26.
文章导航

/