论文

高可靠电机系统主动变结构与容错控制技术

  • 司宾强 ,
  • 黄玉平 ,
  • 朱纪洪 ,
  • 于航
展开
  • 1. 北京信息科技大学 仪器科学与光电工程学院, 北京 100192;
    2. 北京精密机电控制设备研究所, 北京 100076;
    3. 清华大学 精密仪器系, 北京 100084;
    4. 广西大学 机械工程学院, 南宁 530004

收稿日期: 2020-10-12

  修回日期: 2020-12-01

  网络出版日期: 2021-04-27

基金资助

国家自然科学基金(62073185)

Active reconfigurable and fault-tolerant control technology for high reliability motor system

  • SI Binqiang ,
  • HUANG Yuping ,
  • ZHU Jihong ,
  • YU Hang
Expand
  • 1. School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science & Technology University, Beijing 100192, China;
    2. Beijing Institute of Precision Mechatronics and Controls, Beijing 100076, China;
    3. School of Aeronautic Science and Engineering, Tsinghua University, Beijing 100084, China;
    4. School of Mechanical Engineering, Guangxi University, Nanning 530004, China

Received date: 2020-10-12

  Revised date: 2020-12-01

  Online published: 2021-04-27

Supported by

National Natural Science Foundation of China (62073185)

摘要

为了更好地、更高性能地适应航天器多极端工况对伺服系统输出特性的需求变化以及高可靠应用需求,提出了一种新型高可靠电机系统,其主要包括变结构控制器、可变结构驱动拓扑和变结构容错电机。根据系统所需,通过在线变换驱动器与电机绕组的连接方式,重构电机系统结构和参数,进而改变电机系统的输出性能,最终实现每个工况下均能达到航天任务所需性能最优的目的;在驱动器或者电机绕组发生故障时,亦可通过电机系统结构变换,将故障进行隔离并进行容错控制,让剩余的正常部分还能输出所需的扭矩,实现电机系统的带故障运行,保证系统具有故障-工作的高可靠性能力。

本文引用格式

司宾强 , 黄玉平 , 朱纪洪 , 于航 . 高可靠电机系统主动变结构与容错控制技术[J]. 航空学报, 2021 , 42(11) : 524853 -524853 . DOI: 10.7527/S1000-6893.2021.24853

Abstract

To better adapt to changes in the demand for the output characteristics of the servo system under the multi-extreme conditions of the spacecraft and requirements for high reliability applications, a novel high reliability motor system is presented, including the reconfiguration controller, adjustable drive topology and fault-tolerant motor. According to needs of the spacecraft, the connection mode of the driver and the motor winding is reconfigured online to transform the structure and to alter parameters of the motor system, and then the output performance of the motor system is reconfigured simultaneously to realize the goal of achieving the best performance required for aerospace missions under each working condition. When there is a fault in the driver or windings, the structure of the whole motor system will also be reconfigured to isolate the fault and perform fault-tolerant control, so that the remaining normal parts can still output the required torque to achieve remedy operation of the motor system and ensure high reliability applications of the system.

参考文献

[1] YANG H, ZHU Z Q, LIN H Y, et al. Flux adjustable permanent magnet machines:A technology status review[J]. Chinese Journal of Electrical Engineering, 2016, 2(2):14-30.
[2] 苏志从. 采用Y/Δ变换拓宽异步电动机恒转矩变频调速范围的控制系统研究[D]. 福州:福州大学, 2016:4-48. SU Z C. Study on constant torque range extending speed control system of asynchronous motor with Y/Δ winding changeover technique[D]. Fuzhou:Fuzhou University, 2016:4-48(in Chinese).
[3] 苏志从, 王榕生. 采用Y/Δ变换拓宽异步电动机恒转矩调速范围控制系统[J]. 电气技术, 2016(6):25-29, 35. SU Z C, WANG R S. Extended constant torque range for asynchronous machine drive using WYE-DELTA winding changeover technique[J]. Electrical Engineering, 2016(6):25-29, 35(in Chinese).
[4] 石凯. 采用Y/Δ变换扩大永磁同步电动机恒转矩调速范围的矢量控制系统研究[D]. 福州:福州大学, 2017:4-50. SHI K. Study on constant torque range extending speed control system of the open-end winding PMSM with Y/Δ winding changeover technique[D]. Fuzhou:Fuzhou University, 2017:4-50(in Chinese).
[5] HUANG H, CHANG L C. Tests of electrical-two-speed propulsion by induction motor winding switching for electric vehicles[C]//1997 IEEE 47th Vehicular Technology Conference. Technology in Motion. Piscataway:IEEE Press, 1997:1907-1911.
[6] 徐衍亮. 电动汽车用永磁同步电动机及其驱动系统研究[D]. 沈阳:沈阳工业大学, 2001:42-55. XU Y L. Study on permanent magnet synchronous motor and its drive system in electric vehicle application[D]. Shenyang:Shenyang University of Technology, 2001:42-55(in Chinese).
[7] 徐衍亮, 许家群, 唐任远. 电动汽车用永磁同步电动机的绕组换接运行分析[J]. 电工技术学报, 2002, 17(5):21-25. XU Y L, XU J Q, TANG R Y. Study on winding switching of permanent magnet synchronous motor in EV application[J]. Transactions of China Electrotechnical Society, 2002, 17(5):21-25(in Chinese).
[8] NIPP E. Permanent magnet motor drives with switched stator windings[D]. Stockholm:Royal Institute of Technology, 1999:51-272.
[9] NIPP E. Alternative to field-weakening of surface-mounted permanent-magnet motors for variable-speed drives[C]//Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting. Piscataway:IEEE Press, 1995:191-198.
[10] TANG L X, BURRESS T, PRIES J. A reconfigurable-winding system for electric vehicle drive applications[C]//2017 IEEE Transportation Electrification Conference and Expo (ITEC). Piscataway:IEEE Press, 2017:656-661.
[11] FUKUDA K, AKATSU K. 5-phase double winding PMSM with integrated SiC inverter for in-wheel motor[C]//201922nd International Conference on Electrical Machines and Systems (ICEMS). Piscataway:IEEE Press, 2019.
[12] NIPP E, NORBERG E. On the feasibility of switched stator windings in permanent magnet motors for traction drives[C]//Proceedings of the 1998 ASME/IEEE Joint Railroad Conference. Piscataway:IEEE Press, 1998:33-39.
[13] HUANG H, CHANG L C. Electrical two-speed propulsion by motor winding switching and its control strategies for electric vehicles[J]. IEEE Transactions on Vehicular Technology, 1999, 48(2):607-618.
[14] 罗宏浩, 王福兴, 姜红军. 三相绕组切换电路分析与设计[J]. 装甲兵工程学院学报, 2012, 26(6):56-59. LUO H H, WANG F X, JIANG H J. Analysis and design of thiphase winding switching circuit[J]. Journal of Academy of Armored Force Engineering, 2012, 26(6):56-59(in Chinese).
[15] 罗宏浩, 王福兴. 永磁电动机绕组换接的性能分析与切换电路研究[J]. 兵工学报, 2012, 33(7):804-809. LUO H H, WANG F X. Performance analysis of permanent magnet motors with winding switching and switching circuit research[J]. Acta Armamentarii, 2012, 33(7):804-809(in Chinese).
[16] 王雅玲. 电动汽车用双定子永磁无刷电机研究[D]. 济南:山东大学, 2014:61-84. WANG Y L. Research of dual-stator permanent magnet brushless motors used in electric vehicles[D]. Ji'nan:Shandong University, 2014:61-84(in Chinese).
[17] 王雅玲, 徐衍亮. 基于电动汽车驱动的双定子永磁无刷直流电机绕组换接运行分析[J]. 电工技术学报, 2014, 29(1):98-103. WANG Y L, XU Y L. Winding switching analysis of dual-stator permanent magnet brushless DC motors used in electric vehicles[J]. Transactions of China Electrotechnical Society, 2014, 29(1):98-103(in Chinese).
[18] WANG Y L, SUN Y J, DUN Y Q, et al. Winding switching simulation of dual-stator permanent magnet synchronous motor for electric vehicles[C]//2018 International Conference on Advanced Mechatronic Systems (ICAMechS). Piscataway:IEEE Press, 2018:262-265.
[19] 包西平. 数控机床永磁伺服电机绕组串并联换接性能实验研究[J]. 机电工程技术, 2014, 43(10):59-63. BAO X P. Performance study through winding series-parallel switching of permanent magnet synchronous motor[J]. Mechanical & Electrical Engineering Technology, 2014, 43(10):59-63(in Chinese).
[20] 包西平, 吉智. 一种高性能永磁同步伺服电动机绕组串并联换接方法及其仿真研究[J]. 工矿自动化, 2014, 40(10):52-56. BAO X P, JI Z. A switching method of winding series-parallel of high-performance permanent magnet synchronous servo motor and its simulation study[J]. Industry and Mine Automation, 2014, 40(10):52-56(in Chinese).
[21] 李全武, 窦满峰, 赵冬冬, 等. 螺旋桨的永磁无刷直流电机绕组换接驱动方法[J]. 西北工业大学学报, 2016, 34(2):321-327. LI Q W, DOU M F, ZHAO D D, et al. A winding connection method for driving propeller's PM brushless DC motors[J]. Journal of Northwestern Polytechnical University, 2016, 34(2):321-327(in Chinese).
[22] 张莹砾. 电动车用模块化多盘永磁同步电机驱动系统仿真[D]. 武汉:华中科技大学, 2015:10-71. ZHANG Y L. Modular multistage permanent magnet synchronous motor drive system simulation based on EV[D]. Wuhan:Huazhong University of Science and Technology, 2015:10-71(in Chinese).
[23] KUME T, IWAKANE T, SAWA T, et al. A wide constant power range vector-controlled AC motor drive using winding changeover technique[J]. IEEE Transactions on Industry Applications, 1991, 27(5):934-939.
[24] SWAMY M M, KUME T, MAEMURA A, et al. Extended high-speed operation via electronic winding-change method for AC motors[J]. IEEE Transactions on Industry Applications, 2006, 42(3):742-752.
[25] KUME T, SWAMY M. A quick transition electronic winding changeover technique for extended speed ranges[C]//2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551). Piscataway:IEEE Press, 2004:3384-3389.
[26] TAKATSUKA Y, HARA H, YAMADA K, et al. A wide speed range high efficiency EV drive system using winding changeover technique and SiC devices[C]//2014 International Power Electronics Conference (IPEC-Hiroshima 2014-ECCE ASIA). Piscataway:IEEE Press, 2014:1898-1903.
[27] GEISSLER M, OSINENKO P, HERLITZIUS T. Winding switching strategy for electric wheel drives in agricultural machinery[C]//2015 IEEE International Conference on Industrial Technology (ICIT). Piscataway:IEEE Press, 2015:851-856.
[28] 廖怡斐. 交流电机的绕组变匝数控制理论研究[D]. 杭州:浙江大学, 2015:36-55. LIAO Y F. Research on AC motor control by changin winding turns[D]. Hangzhou:Zhejiang University, 2015:36-55(in Chinese).
[29] 廖怡斐, 赵荣祥, 杨欢. 交流电机变绕组匝数拓宽调速范围的新方法[J]. 轻工机械, 2015, 33(4):48-53. LIAO Y F, ZHAO R X, YANG H. Wide speed range control of AC motor by changing equivalent winding turns[J]. Light Industry Machinery, 2015, 33(4):48-53(in Chinese).
[30] 吴敏, 蔡卓剑, 陈铎文, 等. 异步电机绕组切换暂态过程分析与实验平台设计[J]. 机电工程, 2017, 34(7):745-751. WU M, CAI Z J, CHEN D W, et al. Transient analysis and experiment platform of winding changeover induction machine[J]. Journal of Mechanical & Electrical Engineering, 2017, 34(7):745-751(in Chinese).
[31] 张润波. 基于绕组变匝数的永磁同步电机拓宽调速范围的研究[D]. 福州:福州大学, 2017:12-54. ZHANG R B. Research on variable winding turns for extending speed range on PMSM[D]. Fuzhou:Fuzhou University, 2017:12-54(in Chinese).
[32] 张润波, 林荣文, 高靖凯. 基于绕组变匝数的永磁同步电机拓宽调速范围理论研究[J]. 微特电机, 2018, 46(4):6-10. ZHANG R B, LIN R W, GAO J K. Research on A winding changeover technique for extending speed range on PMSM[J]. Small & Special Electrical Machines, 2018, 46(4):6-10(in Chinese).
[33] 吴敏. 电动汽车用变绕组异步电机建模与实验研究[D]. 杭州:浙江大学, 2017:4-74. WU M. Modeling and experiment research on the winding changeover induction machine for electrical vehicles[D]. Hangzhou:Zhejiang University, 2017:4-74(in Chinese).
[34] 陈铎文. 基于DSP的三相异步电机绕组变匝数调速系统研究[D]. 杭州:浙江大学, 2017:8-87. CHEN D W. Research on three-phase asynchronous motor winding change-over speed regulation system based on DSP[D]. Hangzhou:Zhejiang University, 2017:8-87(in Chinese).
[35] 陈铎文, 蔡卓剑, 吴敏, 等. 基于Maxwell与Simplorer的三相异步电机变绕组调速系统仿真[J]. 轻工机械, 2017, 35(2):53-57, 62. CHEN D W, CAI Z J, WU M, et al. Simulation research on three-phase induction motor winding chang-eover speed regulation systems based on Maxwell and Simplorer[J]. Light Industry Machinery, 2017, 35(2):53-57, 62(in Chinese).
[36] 翟秀果, 李毅拓, 郑权. 电动汽车用分裂绕组永磁同步电机设计[J]. 微特电机, 2020, 48(6):9-13. ZHAI X G, LI Y T, ZHENG Q. Design of permanent magnet synchronous motor with divided-winding stator used for electric vehicle[J]. Small & Special Electrical Machines, 2020, 48(6):9-13(in Chinese).
[37] DANIELS B, GURUNG J, HUISMAN H, et al. Feasibility study of multi-phase machine winding reconfiguration for fully electric vehicles[C]//2019 Fourteenth International Conference on Ecological Vehicles and Renewable Energies (EVER). Piscataway:IEEE Press, 2019:1-6.
[38] GERRITS T, WIJNANDS C G E, PAULIDES J J H, et al. Electrical gearbox equivalent by means of dynamic machine operation[C]//Proceedings of the 201114th European Conference on Power Electronics and Applications. Piscataway:IEEE Press, 2011:1-10.
[39] GERRITS T, WIJNANDS C G E, PAULIDES J J H, et al. Dual voltage source inverter topology extending machine operating range[C]//2012 IEEE Energy Conversion Congress and Exposition (ECCE). Piscataway:IEEE Press, 2012:2840-2846.
[40] HEMMATI S, LIPO T A. Field weakening of a surface-mounted permanent magnet motor by winding switching[J]. Electric Power Components and Systems, 2013, 41(13):1213-1222.
[41] ATIQ S, LIPO T A, KWON B I. Novel field weakening technique for surface mounted permanent magnet machine using current regulated voltage source inverters[C]//2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion. Piscataway:IEEE Press, 2014:836-841.
[42] ARIF A, BALOCH N, KWON B I. Winding switching and turn switching in permanent magnet vernier machines for wide speed range operation and high efficiency[J]. IEEE Access, 2019:1-1.
[43] HIJIKATA H, AKATSU K. A basic study of MATRIX motor[C]//2011 IEEE Energy Conversion Congress and Exposition. Piscataway:IEEE Press, 2011:3285-3290.
[44] HIJIKATA H, AKATSU K. Design and online winding reconfigurations method of MATRIX motor[C]//2012 IEEE Energy Conversion Congress and Exposition (ECCE). Piscataway:IEEE Press, 2012:1330-1337.
[45] SAKAI Y, HIJIKATA H, AKATSU K, et al. Study of switching method for MATRIX motor realizing variable characteristic[C]//2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia). Piscataway:IEEE Press, 2016:3012-3017.
[46] 司宾强, 朱纪洪. 冗余电源可重构容错式驱动拓扑结构:CN103457503A[P]. 2013-12-18. SI B Q, ZHU J H. Reconfigurable fault-tolerant type driving topological structure of redundant power source:CN103457503A[P]. 2013-12-18(in Chinese).
[47] SI B Q, FU Q, WANG T, et al. Twofold fail-work remedy for reconfigurable driver and windings of four-phase permanent magnet fault-tolerant motor system[J]. IEEE Transactions on Power Electronics, 2019, 34(8):7763-7774.
[48] SIN S,AYUB M,KWON B I. Operation method of non-salient permanent magnet synchronous machine for extended speed range[J]. IEEE Access, 2020, 8:105922-105935.
[49] SIN S,AYUB M,KWON B I. Investigation study of multi-mode multi-speed operation method for surface-mounted permanent magnet synchronous machines[J]. IEEE Access, 2020, 8:169470-169485.
[50] SHOYAMA T, AKATSU K. Wide driving range realization by multi-layer multi-phase motor for electric vehicle[C]//201720th International Conference on Electrical Machines and Systems (ICEMS). Piscataway:IEEE Press, 2017:1-6.
[51] HEMMATI S, BARIGH M. A new approach for field weakening in a surface mounted permanent magnet synchronous motor by winding switching[C]//201927th Iranian Conference on Electrical Engineering (ICEE). Piscataway:IEEE Press, 2019:509-514.
[52] ATIQ S, LIPO T A, KWON B I. Experimental verification of winding switching technique to enhance maximum speed operation of surface mounted permanent magnet machines[J]. IET Electric Power Applications, 2016, 10(4):294-303.
[53] ATIQ S, LIPO T A, KWON B I. Wide speed range operation of non-salient PM machines[J]. IEEE Transactions on Energy Conversion, 2016, 31(3):1179-1191.
[54] HIJIKATA H, SAKAI Y, AKATSU K, et al. Wide range operation by low-voltage inverter-fed MATRIX motor with single-layer distributed winding for automobile traction motor[C]//2015 IEEE Energy Conversion Congress and Exposition (ECCE). Piscataway:IEEE Press, 2015:6545-6551.
[55] HIJIKATA H, SAKAI Y, AKATSU K, et al. Wide speed range operation by low-voltage inverter-fed MATRIX motor for automobile traction motor[J]. IEEE Transactions on Power Electronics, 2018, 33(8):6887-6896.
[56] TIAN B, ZHANG Z R, WEI J D, et al. Investigation of dual-inverter-fed drives for permanent magnet synchronous motor with winding switching[C]//IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society. Piscataway:IEEE Press, 2014:709-714.
[57] 张卓然, 耿伟伟, 田波. 一种可切换绕组的永磁同步电机驱动系统:CN103684196A[P]. 2014-03-26. ZHANG Z R, GENG W W, TIAN B. Permanent magnet synchronous motor driving system capable of switching winding:CN103684196A[P]. 2014-03-26(in Chinese).
[58] CHEN C H, CHENG M Y. Design of a multispeed winding for a brushless DC motor and its sensorless control[J]. IEE Proceedings-Electric Power Applications, 2006, 153(6):834.
[59] NGUYEN N K, SEMAIL E, MEINGUET F, et al. Different virtual stator winding configurations of open-end winding five-phase PM machines for wide speed range without flux weakening operation[C]//201315th European Conference on Power Electronics and Applications (EPE). Piscataway:IEEE Press, 2013:1-8.
[60] HAO L, NAMUDURI C, NAIK S M, et al. High speed performance of PM machine with reconfigurable winding[C]//2015 IEEE Energy Conversion Congress and Exposition (ECCE). Piscataway:IEEE Press, 2015:1840-1848.
[61] HAO L, NAMUDURI C, GOPALAKRISHNAN S, et al. Comparison of the influence of PM drive system with voltage adaptation or machine winding reconfiguration on HEV/EV applications[C]//2015 IEEE Energy Conversion Congress and Exposition (ECCE). Piscataway:IEEE Press, 2015:6130-6138.
[62] GERRITS T, WIJNANDS C G E, PAULIDES J J H, et al. Fault-tolerant operation of a fully electric gearbox equivalent[J]. IEEE Transactions on Industry Applications, 2012, 48(6):1855-1865.
[63] AYUB M, ATIQ S, SIREWAL G J, et al. Fault-tolerant operation of wound field synchronous machine using coil switching[J]. IEEE Access, 2019, 7:67130-67138.
[64] DARIJEVIC M, JONES M. Fault tolerant multi-level five-phase open-end winding drives[C]//201449th International Universities Power Engineering Conference (UPEC). Piscataway:IEEE Press, 2014:1-6.
文章导航

/