电子电气工程与控制

电推进飞机新型高功率密度轴向磁场永磁电机对比与分析

  • 高华敏 ,
  • 张卓然 ,
  • 王晨 ,
  • 薛涵 ,
  • 刘业
展开
  • 南京航空航天大学 多电飞机电气系统工信部重点实验室, 南京 211106

收稿日期: 2021-01-07

  修回日期: 2021-02-01

  网络出版日期: 2021-04-27

基金资助

国家自然科学基金"叶企孙"联合基金重点项目(U2141223)

Comparison and analysis of new high power density axial flux permanent magnet machine for electric propulsion aircraft

  • GAO Huamin ,
  • ZHANG Zhuoran ,
  • WANG Chen ,
  • XUE Han ,
  • LIU Ye
Expand
  • Center for More-Electric-Aircraft Power System, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Received date: 2021-01-07

  Revised date: 2021-02-01

  Online published: 2021-04-27

Supported by

Ye Qisun Joint Foundation Project supported by the State Key Program of National Natural Science Foundation of China (U2141223)

摘要

为了实现电推进飞机电机的高功率密度和高效率,提出了一种无槽轴向磁场永磁电机,该电机在继承定子无铁心轴向磁场永磁电机高效率优势的同时,能够实现更高的功率输出能力。首先,阐述了3种轴向磁场永磁电机的拓扑结构,包括定子无铁心轴向磁场永磁电机、无槽轴向磁场永磁电机及无轭分块电枢轴向磁场永磁电机。在此基础上,分别对3种电机的绕组因数、转矩输出能力和损耗分布进行了深入分析,对其损耗产生机理和影响因素进行了研究。针对飞机推进电机应用场合,对3种电机的电磁特性进行了对比。结果表明,提出的无槽轴向磁场永磁电机具有高功率密度和高效率的优势,适合应用于电推进飞机。最后,研制了一台50 kW定子无铁心轴向磁场永磁电机原理样机,试验结果验证了理论和仿真分析方法的正确性。

本文引用格式

高华敏 , 张卓然 , 王晨 , 薛涵 , 刘业 . 电推进飞机新型高功率密度轴向磁场永磁电机对比与分析[J]. 航空学报, 2022 , 43(5) : 325229 -325229 . DOI: 10.7527/S1000-6893.2021.25229

Abstract

To achieve high power density and high efficiency of the motor in electric propulsion aircraft, this paper proposes a slotless Axial Flux Permanent Magnet (AFPM) machine, which inherits high efficiency of ironless stator AFPM machine, and achieves higher power output capability. Firstly, topologies of three kinds of AFPM machines are described, including ironless stator AFPM machine, slotless AFPM machine, and Yokeless Armature and Segmented Armature (YASA) AFPM machine. Then, the winding factor, torque output capability and loss distribution of the three kinds of machines are analyzed, and the mechanisms of losses of the machines are also studied. When used as the aircraft propulsion machine, the three machines are compared in terms of electromagnetic characteristics. The results show that the slotless AFPM machine proposed has the advantages of high power density and high efficiency, and is suitable for the electric propulsion aircraft. Finally, the prototype of a 50 kW ironless stator AFPM machine is developed, and the experimental results verify the correctness of the theory and simulation analysis method.

参考文献

[1] SARLIOGLU B, MORRIS C T. More electric aircraft:Review, challenges, and opportunities for commercial transport aircraft[J]. IEEE Transactions on Transportation Electrification, 2015, 1(1):54-64.
[2] WEIMER J. Past, present and future of aircraft electrical power systems[C]//39th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2001.
[3] BRADLEY M K, DRONEY C K. Subsonic ultra green aircraft research:Phase I final report[R]. Hampton:NASA Langley Research Center, 2011.
[4] DAVIES K, NORMAN P, JONES C, et al. A review of turboelectric distributed propulsion technologies for N+3 aircraft electrical systems[C]//201348th International Universities'Power Engineering Conference (UPEC). Piscataway:IEEE Press, 2013.
[5] FELDER J, KIM H, BROWN G. Turboelectric distributed propulsion engine cycle analysis for hybrid-wing-body aircraft[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009.
[6] BROWN G. Weights and efficiencies of electric components of a turboelectric aircraft propulsion system[C]//49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011.
[7] NALIANDA D, SINGH R. Turbo-electric distributed propulsion opportunities, benefits and challenges[J]. Aircraft Engineering and Aerospace Technology, 2014, 86(6):543-549.
[8] 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2018, 39(1):021651. KONG X H, ZHANG Z R, LU J W, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):021651(in Chinese).
[9] AGRAWAL S, BANERJEE A, BEACH R. Brushless doubly-fed reluctance machine drive for turbo-electric distributed propulsion systems[C]//2018 AIAA/IEEE Electric Aircraft Technologies Symposium. Reston:AIAA, 2018:139-155.
[10] ANDERSON A D, RENNER N J, WANG Y Y, et al. System weight comparison of electric machine topologies for electric aircraft propulsion[C]//2018 AIAA/IEEE Electric Aircraft Technologies Symposium. Reston:AIAA, 2018.
[11] AADITYA J, WALSH K, GARRISON, et al. Axial flux permanent magnet disc machines:A review[J]. Asian Journal of Multidimensional Research, 2021, 10(11):224-228.
[12] GIERAS J F, WANG R J, KAMPER M J. Axial flux permanent magnet brushless machines[M]. Dordrecht:Springer Netherlands, 2008.
[13] TARAN N, RALLABANDI V, HEINS G, et al. Coreless and conventional axial flux permanent magnet motors for solar cars[J]. IEEE Transactions on Industry Applications, 2018, 54(6):5907-5917.
[14] BUMBY J R, MARTIN R. Axial-flux permanent-magnet air-cored generator for small-scale wind turbines[J]. IEE Proceedings-Electric Power Applications, 2005, 152(5):1065.
[15] VIRTIC P, PISEK P, MARCIC T, et al. Analytical analysis of magnetic field and back electromotive force calculation of an axial-flux permanent magnet synchronous generator with coreless stator[J]. IEEE Transactions on Magnetics, 2008, 44(11):4333-4336.
[16] ZHANG Z R, GENG W W, LIU Y, et al. Feasibility of a new ironless-stator axial flux permanent magnet machine for aircraft electric propulsion application[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(1):30-38.
[17] BENLAMINE R, DUBAS F, RANDI S A, et al. 3-D numerical hybrid method for PM eddy-current losses calculation:Application to axial-flux PMSMs[J]. IEEE Transactions on Magnetics, 2015, 51(7):1-10.
[18] GENG W, ZHANG Z, LI Q. High torque density fraction-slot concentrated axial-flux-permanent-magnet machine with modular SMC stator[J]. IEEE Transactions on Industy Applications, 2020, 56(4):3691-3698.
[19] GERLANDO A, FOGLIA G M, IACCHETTI M F, et al. Parasitic currents in stray paths of some topologies of YASA AFPM machines:Trend with machine size[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5):2746-2756.
[20] XU L, XU Y, GONG J. Analysis and optimization of cogging torque in yokeless and segmented armature axial-flux permanent-magnet machine with soft magnetic composite core[J]. IEEE Transactions on Magnetics, 2018, 54(11):1-5.
[21] CHAN T F, LAI L L, XIE S. Field computation for an axial flux permanent-magnet synchronous generator[J]. IEEE Transactions on Energy Conversion, 2009, 24(1):1-10.
[22] HEKMATI P, MIRSALIM M. Design and analysis of a novel axial-flux slotless limited-angle torque motor with trapezoidal cross section for the stator[J]. IEEE Transactions on Energy Conversion, 2013, 28(4):815-822.
[23] HUANG Y K, ZHOU T, DONG J N, et al. Magnetic equivalent circuit modeling of yokeless axial flux permanent magnet machine with segmented armature[J]. IEEE Transactions on Magnetics, 2014, 50(11):1-4.
[24] LEE D S, JIN A, MIN B H, et al. Optimisation method to maximise torque density of high-speed slotless permanent magnet synchronous machine in aerospace applications[J]. IET Electric Power Applications, 2018, 12(8):1075-1081.
[25] WANG C, ZHANG Z R, LIU Y, et al. Effect of slot-pole combination on the electromagnetic performance of ironless stator AFPM machine with concentrated windings[J]. IEEE Transactions on Energy Conversion, 2020, 35(2):1098-1109.
文章导航

/