先进航空材料焊接/连接专栏

BNi71CrSi钎料钎焊Hastelloy N合金的接头组织和性能

  • 闾川阳 ,
  • 陈刚强 ,
  • 唐夏焘 ,
  • 贺艳明 ,
  • 杨建国 ,
  • 郑文健 ,
  • 马英鹤 ,
  • 李华鑫 ,
  • 高增梁
展开
  • 1. 浙江工业大学 化工机械设计研究所, 杭州 310014;
    2. 华东理工大学 机械与动力工程学院 承压系统与安全教育部重点实验室, 上海 200237;
    3. 浙江省特种设备科学研究院, 杭州 310020

收稿日期: 2020-11-30

  修回日期: 2020-12-14

  网络出版日期: 2021-04-27

基金资助

国家磁约束核聚变能发展研究专项(2019YFE03100400);国家自然科学基金(51705457,51975530,52005445);浙江省自然科学基金(LQ21E050015)

Microstructure and mechanical properties of Hastelloy N superalloy joints brazed using BNi71CrSi filler alloy

  • LU Chuanyang ,
  • CHEN Gangqiang ,
  • TANG Xiatao ,
  • HE Yanming ,
  • YANG Jianguo ,
  • ZHENG Wenjian ,
  • MA Yinghe ,
  • LI Huaxin ,
  • GAO Zengliang
Expand
  • 1. Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
    2. MOE Key Laboratory of Pressure Systems and Safety, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China;
    3. Zhejiang Academy of Special Equipment Science, Hangzhou 310020, China

Received date: 2020-11-30

  Revised date: 2020-12-14

  Online published: 2021-04-27

Supported by

National MCF Energy R&D Program (2019YFE03100400), National Natural Science Foundation of China (51705457, 51975530, 52005445), Natural Science Foundation of Zhejiang Province (LQ21E050015)

摘要

采用无硼BNi71CrSi钎料实现了Hastelloy N合金的高质量真空钎焊连接。通过扫描电子显微镜(SEM)和能谱仪(EDS)对不同钎焊温度和保温时间下获得接头的微观组织及成分进行了分析。结果表明:Hastelloy N合金接头组成为:母材/扩散区/等温凝固区/非等温凝固区/等温凝固区/扩散区/母材。非等温凝固区主要由γ-Ni固溶体、Ni2Si和M6C组成(M=Ni,Mo,Si,Cr);等温凝固区主要组成为γ-Ni固溶体;母材与等温凝固区之间的扩散区中基体为Ni基固溶体,析出相为M6C。随着钎焊温度的升高和保温时间的延长,非等温凝固区宽度逐渐减小,等温凝固区宽度逐渐增加,接头经历由3区域(无等温凝固区)→4区域→3区域(无非等温凝固区)的演化过程。此外,随着钎焊温度的升高,钎缝内硅化物数量减少,γ-Ni固溶体晶粒长大;随着保温时间的延长,接头中心位置的硅化物和碳化物数量减少,母材/等温凝固区之间扩散区内碳化物数量增加,尺寸变大。在所研究的钎焊工艺下,当钎焊温度1 240℃,保温10 min时获得的接头剪切强度最高(643.3 MPa),达到母材的87.4%;所有接头的断裂方式均为脆性断裂。

本文引用格式

闾川阳 , 陈刚强 , 唐夏焘 , 贺艳明 , 杨建国 , 郑文健 , 马英鹤 , 李华鑫 , 高增梁 . BNi71CrSi钎料钎焊Hastelloy N合金的接头组织和性能[J]. 航空学报, 2022 , 43(2) : 625040 -625040 . DOI: 10.7527/S1000-6893.2021.25040

Abstract

A high-quality Hastelloy N alloy brazed joint is achieved using boron-free BNi71CrSi filler alloy. The microstructure and composition of Hastelloy N alloy joints brazed at different brazing temperatures and soaking time are investigated by the Scanning Electron Microscope (SEM) and Energy Dispersive Spectrometer (EDS). Results show that the Hastelloy N alloy joints can be divided into base metal/diffusion zone/isothermal solidification zone/athermal solidification zone/isothermal solidification zone/diffusion zone/base metal. The athermal solidification zone is mainly consisted of γ-Ni solid solution (γ-Ni(s,s)), silicide (Ni2Si) and carbide (M6C)(M=Ni,Mo,Si,Cr). The isothermal solidification zone is mainly composed of γ-Ni(s,s). M6C is precipitated in the diffusion zone between the base metal and isothermal solidification zone. With the increase in brazing temperature and soaking time, the width of athermal solidification zone is decreased, whereas the width of isothermal solidification zone was increased. The constitution of the joints was changed from three zones (without isothermal solidification zone) → four zones → three zones (without athermal solidification zone). As the brazing temperature increased, the number of silicides in the brazing joint decreased, while the grains of γ-Ni(s,s) grew larger. With the extension of the soaking time, the number of silicides and M6C in the center of joint is decreased, while the carbides in the diffusion zone between the base metal and the isothermal solidification zone were increased and coarsened. Within the brazing conditions investigated, the highest shear strength of the joint is 643.3 MPa obtained at 1 240℃ for 10 min, which is 87.4% of the shear strength of base metal; all the brazed joints presented a brittle fracture mode during shear testing.

参考文献

[1] 王会阳, 安云岐, 李承宇, 等. 镍基高温合金材料的研究进展[J].材料导报, 2011, 25(18):482-486. WANG H Y, AN Y Q, LI C Y, et al. Research progress of Ni-based superalloys[J].Materials Reports, 2011, 25(18):482-486(in Chinese).
[2] LEE D Y, SANTELLA M L. Thermal aging effects on the mechanical properties of as-cast Ni3Al-based alloy[J].Materials Science and Engineering:A, 2006, 428(1-2):196-204.
[3] MCCOY H E, WEIR J R. Status of materials development for molten salt reactors:ORNL-5920[R]. Oak Ridge:Oak Ridge National Lab, 1978.
[4] LIU T, DONG J S, WANG L, et al. Effect of long-term thermal exposure on microstructure and stress rupture properties of GH3535 superalloy[J].Journal of Materials Science and Technology, 2015, 31(3):269-279.
[5] 徐九华, 张志伟, 傅玉灿. 镍基高温合金高效成型磨削的研究进展与展望[J].航空学报, 2014, 35(2):351-360. XU J H, ZHANG Z W, FU Y C. Review and prospect on high efficiency profile grinding of nickel-based superalloys[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(2):351-360(in Chinese).
[6] JIANG Z G, TAO W, YU K, et al. Comparative study on fiber laser welding of GH3535 superalloy in continuous and pulsed waves[J].Materials & Design, 2016, 110:728-739.
[7] MA T J, CHEN X, LI W Y, et al. Microstructure and mechanical property of linear friction welded nickel-based superalloy joint[J].Materials & Design, 2016, 89:85-93.
[8] XIONG J T, YUAN L, ZHU Y, et al. Diffusion bonding of nickel-based superalloy GH4099 with pure nickel interlayer[J].Journal of Materials Science, 2019, 54(8):6552-6564.
[9] 张丽霞, 冯吉才. GH3044镍基合金钎焊接头的界面组织和强度分析[J].材料科学与工艺, 2009, 17(6):770-773. ZHANG L X, FENG J C. Interface structure and strength analysis of brazed GH3044 nickel-based alloy joint[J].Materials Science and Technology, 2009, 17(6):770-773(in Chinese).
[10] 李卓然, 于康, 刘兵, 等. GH4169合金真空扩散连接接头的组织和性能[J].焊接学报, 2010, 31(11):13-16. LI Z R, YU K, LIU B. et al. Microstructure and properties of GH4169 vacuum diffusion bonded joint[J].Transactions of the China Welding Institution, 2010, 31(11):13-16(in Chinese).
[11] 宋晓国, 曹健, 冯吉才, 等. 连接温度对GH4169合金TLP接头界面组织和性能的影响[J].中国有色金属学报, 2012, 22(9):2516-2521. SONG X G, CAO J, FENG J C, et al. Effect of bonding temperature on interfacial microstructure and properties of GH4169 alloy TLP joints[J].The Chinese Journal of Nonferrous Metals, 2012, 22(9):2516-2521(in Chinese).
[12] WANG W X, JIANG L, LI C W, et al. Effects of post-weld heat treatment on microstructure and mechanical properties of Hastelloy N superalloy welds[J].Materials Today Communications, 2019, 19:230-237.
[13] JALILVAND V, OMIDVAR H, SHAKERI H R, et al. Microstructural evolution during transient liquid phase bonding of Inconel 738LC using AMS 4777 filler alloy[J].Materials Characterization, 2013, 75:20-28.
[14] HENDERSON M B, ARRELL D, LARSSON R, et al. Nickel based superalloy welding practices for industrial gas turbine applications[J].Science and Technology of Welding and Joining, 2004, 9(1):13-21.
[15] KIM D Y, HWANG J H, KIM K S, et al. A study on fusion repair process for a precipitation hardened IN738 Ni-Based superalloy[J].Journal of Engineering for Gas Turbines and Power, 1999, 122(3):401-404.
[16] SONG X G, BEN B Y, HU S P, et al. Vacuum brazing high Nb-containing TiAl alloy to Ti60 alloy using Ti-28 Ni eutectic brazing alloy[J].Journal of Alloys and Compounds, 2017, 692:485-491.
[17] KHORRAM A, GHOREISHI M, TORKAMANY M J, et al. Laser brazing of Inconel 718 alloy with a silver based filler metal[J].Optics & Laser Technology, 2014, 56:443-450.
[18] 周媛, 毛唯, 李晓红. BNi82CrSiB钎料钎焊DD6单晶合金接头组织及力学性能研究[J].材料工程, 2007(5):3-6. ZHOU Y, MAO W, LI X H. Microstructure and mechanical properties of single crystal superalloy DD6 joint brazed with BNi82CrSiB filler metal[J].Journal of Materials Engineering, 2007(5):3-6(in Chinese).
[19] HE Y M, ZHENG W J, YANG J G, et al. An analysis of high-temperature microstructural stability and mechanical performance of the Hastelloy N-Hastelloy N Superalloy joint bonded with pure Ti[J].Materials & Design, 2018, 144:72-85.
[20] CAO J, WANG Y F, SONG X G, et al. Effects of post-weld heat treatment on microstructure and mechanical properties of TLP bonded Inconel718 superalloy[J].Materials Science and Engineering:A, 2014, 590:1-6.
[21] POURANVARI M, EKRAMI A, KOKABI A H. Effect of bonding temperature on microstructure development during TLP bonding of a nickel base superalloy[J].Journal of Alloys and Compounds, 2009, 469(1-2):270-275.
[22] POURANVARI M, EKRAMI A, KOKABI A H. TLP bonding of cast IN718 nickel based superalloy:process-microstructure-strength characteristics[J].Materials Science and Engineering:A, 2013, 568:76-82.
[23] HE Y M, YANG J G, QIN C J, et al. Characterization of the Ni-Mo-Cr superalloy subjected to simulated heat-affected zone thermal cycle treatment[J].Journal of Alloys and Compounds, 2015, 643:7-16.
[24] HAN W P, WAN M, ZHAO R, et al. Effect of post-bond heat treatment on microstructural evolution and mechanical properties of brazed ultrathin-walled structure[J].Materials Science and Engineering:A, 2019, 742:680-691.
[25] MALEKAN A, FARVIZI M, MIRSALEHI S E, et al. Influence of bonding time on the transient liquid phase bonding behavior of Hastelloy X using Ni-Cr-B-Si-Fe filler alloy[J].Materials Science and Engineering:A, 2019, 755:37-49.
[26] H. П. 梁基谢夫. 金属二元系相图手册[M]. 郭青蔚, 译. 北京:化学工业出版社, 2009,1026-1036. H. П. ЛЯКИШЕВ. Manual of phase diagram of metal binary system[M]. GUO Q W, translated. Beijing:Chemical Industry Press, 2009,1026-1036(in Chinese).
[27] SCHUSTER J C, DU Y. Experimental investigation and thermodynamic modeling of the Cr-Ni-Si system[J].Metallurgical and Materials Transactions A, 2000, 31(7):1795-1803.
[28] 王晚霞. Hastelloy N合金焊后热处理碳化物转变机理研究[D]. 上海:中国科学院大学, 2019:79-90. WANG W X. Study on carbide transformation mechanism of Hastelloy N alloy after post-weld heat treatment[D]. Shanghai:University of Chinese Academy of Sciences, 2019:79-90(in Chinese).
[29] YU K, JIANG Z G, LI C W, et al. Microstructure and mechanical properties of fiber laser welded GH3535 superalloy[J].Journal of Materials Science & Technology. 2016, 33(11):1289-1299.
[30] XU Z F, DONG J S, JIANG L, et al. Effects of Si addition and long-term thermal exposure on the tensile properties of a Ni-Mo-Cr superalloy[J].Acta Metallurgica Sinica (English Letters), 2015, 28(8):951-957.
[31] JIANG L, YE X X, WANG Z Q, et al. The critical role of Si doping in enhancing the stability of M6C carbides[J].Journal of Alloys and Compounds, 2017, 728:917-926.
[32] KUO K. The formation of η carbides[J].Acta Metallurgica, 1953, 1(3):301-304.
[33] FRISK K, BRATBERG J, MARKSTRÖM A. Thermodynamic modelling of the M6C carbide in cemented carbides and high-speed steel[J].Calphad, 2005, 29(2):91-96.
[34] WU Q Y, SONG H J, SWINDEMAN R W, et al. Microstructure of long-term aged IN617 Ni-base superalloy[J].Metallurgical and Materials Transactions A,2008,39(11):2569-2585.
[35] WISELL H. An experimental study of carbide/austenite equilibria in the highspeed steel alloy system[J].Metallurgical and Materials Transactions A, 1991, 22(6):1391-1405.
[36] WADA H. Thermodynamic properties of carbides in 2.25 Cr-1Mo steel at 985 K[J].Metallurgical Transactions and Materials A, 1986, 17:1585-1592.
[37] XU Z F, JIANG L, DONG J S, et al. The effect of silicon on precipitation and decomposition behaviors of M6C carbide in a Ni-Mo-Cr superalloy[J].Journal of Alloys and Compounds, 2015, 620:197-203.
[38] 王刚, 陈国庆, 张秉刚, 等. 电子束钎焊修复K465镍基高温合金叶片[J].焊接学报, 2010, 31(9):85-88. WANG G, CHEN G Q, ZHANG B G, Electron beam brazing repair of K465 Ni-base superalloy blades[J].Transactions of the China Welding Institution, 2010, 31(9):85-88(in Chinese).
[39] 庄鸿寿, E·罗格夏特. 高温钎焊[M]. 北京:国防工业出版社, 1989, 41-127. ZHUANG H S, E·LUGSCHEIDER. High temperature brazing[M]. Beijing:National Defense Industry Press, 1989, 41-127(in Chinese).
文章导航

/