为解决航空拖曳诱饵系统研制过程中拖曳缆绳强度设计问题,对拖曳诱饵系统机动过程缆绳张力进行了仿真研究。仿真中建立了缆绳的质量弹簧阻尼模型和诱饵弹的六自由度动力学模型,研究了直线加速和机动转弯2个典型飞行动作中缆绳受力情况,分析了载机加速度、飞行高度、缆绳弹性模量、缆绳直径等因素对缆绳张力的影响。结果表明:缆绳中张力大小不仅与诱饵弹、缆绳的气动阻力、重力有关,还与它们的惯性力有关;由于张力在缆绳中传递存在时滞性,机动过程中缆绳张力存在波动现象,波动的剧烈程度与载机加速度、缆绳弹性模量、缆绳直径有关;机动转弯过程中,缆绳会承受一个较大的峰值应力,该应力随着转弯角速度的增大而增大。
To solve the problem of strength design of towing cable during the development of aerial towed decoy system, the cable tension during maneuvers is simulated in this paper. The mass spring damping model of the cable and the six-degree-of-freedom dynamic model of the decoy are established in the simulation. Cable tension during two typical flight maneuvers are studied:the linear accelerated motion and the turning maneuver motion. The influences of aircraft acceleration, flight height, cable elastic modulus and cable diameter on cable tension are also analyzed. The results show that cable tension is related not only to aerodynamic forces and gravity of the system, but also to inertial forces. Due to the time lag during transfer of tension in the cable, cable tension fluctuates during maneuver. The fluctuation of tension is related to aircraft acceleration, cable elastic modulus and cable diameter. The cable is subjected to a peak tension during the turning maneuver, which increases along with the turning angular velocity.
[1] 李鹏, 朱平云, 陈望达. 拖曳式诱饵的发展现状及展望[J]. 海军航空工程学院学报, 2004, 19(4):479-481. LI P,ZHU P Y,CHEN W D.The current situation and the prospece of towed decoy system[J].Journal of Naval Aeronautical and Astronautical University,2004,19(4),479-481(in Chinese)
[2] 方有培. 拖曳式有源射频诱饵干扰防空导弹研究[J]. 航天电子对抗, 2001, 17(4):16-19. FANG Y P.Study on jamming air defense missile with towed active radio frequency decoy[J]. Aerospace Electronic Warfare, 2001, 17(4):16-19(in Chinese).
[3] 马明. 反雷达制导空空导弹的方法与策略[J]. 航空兵器, 2001(3):25-28. MA M.Method and Strategy of Anti-radar Guided Air-to-air Missile[J]. Aero Weaponry, 2001(3):25-28(in Chinese).
[4] KOLODNER I I. Heavy rotating string-a nonlinear eigenvalue problem[J]. Communications on Pure and Applied Mathematics, 1955, 8(3):395-408.
[5] WU C H. Whirling of a string at large angular speeds-A nonlinear eigenvalue problem with moving boundary layers[J]. SIAM Journal on Applied Mathematics, 1972, 22(1):1-13.
[6] TRIANTAFYLLOU M S. The dynamics of translating cables[J]. Journal of Sound and Vibration, 1985, 103(2):171-182.
[7] TRIANTAFYLLOU M S, HOWELL C T. Non-linear unstable response of hanging chains[J]. Journal of Sound and Vibration, 1993, 162(2):263-280.
[8] TRIANTAFYLLOU M S, HOWELL C T. Dynamic response of cables under negative tension:an ill-posed problem[J]. Journal of Sound and Vibration, 1994, 173(4):433-447.
[9] KAMMAN J W, HUSTON R L. Modeling of variable length towed and tethered cable systems[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(4):602-608.
[10] LIU K, LI D C, XIANG J W, et al. Modeling and dynamic analysis of a cable towed decoy[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2015
[11] NARKIS Y. Deployment forces in towing[J]. Journal of Aircraft, 1978, 15(2):123-124.
[12] MATUK C. Flight tests of tow wire forces while flying a racetrack pattern[J]. Journal of Aircraft, 1983, 20(7):623-627.
[13] SUN L, HEDENGREN J D, BEARD R W. Optimal trajectory generation using model predictive control for aerially towed cable systems[J]. Journal of Guidance, Control, and Dynamics, 2014,37(2):1-35.
[14] DOROUDGAR S. Static and dynamic modeling and simulation of the umbilical cable in a tethered unmanned aerial system[D]. Vancouver:Simon Fraser University, 2016.
[15] 王一飞. TW-1拖靶缆绳张力与形状参数的计算[J]. 南京航空航天大学学报, 1992, 24(1):88-95. WONG Y F. Calculation of the tension and shape parameter for TW-1 target towlines[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1992, 24(1):88-95(in Chinese).
[16] 田新锋, 陈峰, 陈翔宇. 多阶组合航空拖缆张力分布仿真研究[J]. 微计算机信息, 2005, 21(18):163-164, 46. TIAN X F, CHEN F, CHEN X Y. Simulation oftensile distribution for the multi-stepped combined aeronatic towline[J]. Control & Automation, 2005, 21(18):163-164, 46(in Chinese).
[17] 李世秋, 安佳宁, 田新锋. 航空拖靶系统大长度拖缆飞行参数计算与分析[J]. 航空计算技术, 2014, 44(4):10-12. LI S Q, AN J N, TIAN X F. Calculation and analysis on flight parameters of towlinewith large length in aerial tow target system[J]. Aeronautical Computing Technique, 2014, 44(4):10-12(in Chinese).
[18] 马东立, 刘亚枫, 林鹏. 航空拖曳诱饵系统的动态特性研究[J]. 航空学报, 2014, 35(1):161-170. MA D L, LIU Y F, LIN P. Study of dynamic characteristics of aeronautic towed decoy system[J]. Acta Aeronautica etAstronautica Sinica, 2014, 35(1):161-170(in Chinese).
[19] MA D L, WANG S Q, YANG M Q, et al. Dynamic simulation of aerial towed decoy system based on tension recurrence algorithm[J]. Chinese Journal of Aeronautics, 2016, 29(6):1484-1495.
[20] WILLIAMS P, SGARIOTO D, TRIVAILO P. Motion planning for an aerial-towed cable system[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco, California. Reston:AIAA, 2005
[21] HOERNER S F. Fluid dynamic drag[M]. Midland Park:Pulished By the Author, 1965:65-71.
[22] 丁力军, 丁海生, 尹立军. 现代航空拖靶系统的发展与应用[J]. 航空科学技术, 2006, 17(4):18-22. DING L J, DING H S, YIN L J. Development and application of modern tow target system[J]. Aeronautical Science and Technology, 2006, 17(4):18-22(in Chinese).