固体力学与飞行器总体设计

软式空中加油对接约束力不确定性分析

  • 张国斌 ,
  • 张青斌 ,
  • 丰志伟 ,
  • 陈青全 ,
  • 杨涛
展开
  • 国防科技大学 空天科学学院, 长沙 410073

收稿日期: 2020-07-09

  修回日期: 2020-10-14

  网络出版日期: 2020-12-25

基金资助

国家自然科学基金(11772353)

Uncertainty analysis on binding force of hose-drogue aerial refueling

  • ZHANG Guobin ,
  • ZHANG Qingbin ,
  • FENG Zhiwei ,
  • CHEN Qingquan ,
  • YANG Tao
Expand
  • College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2020-07-09

  Revised date: 2020-10-14

  Online published: 2020-12-25

Supported by

National Natural Science Foundation of China (11772353)

摘要

软式空中加油过程中锥套和受油管连接处的最大约束力,可造成锥套和受油管的脱离以及受油管的断裂,甚至引发安全事故。为了研究输油过程中软管锥套组合体的动力学特性,利用ALE-ANCF输油管道模型和多体建模方法,建立了加油系统刚-柔-液耦合的多体动力学模型;为了获取参数不确定条件下对接约束力的期望范围,采用融合多项式混沌方法和动力学模型的不确定性快速分析方法,得到了不同高度下飞行速度、输油软管长度和两机相对运动速度存在不确定性时的对接约束力期望范围。数值仿真结果表明,当受油机和加油机存在相对运动时,受油管在特定截面处的最大压力、剪力和弯矩的期望值将会分别大幅提高50%、272%和772%。

本文引用格式

张国斌 , 张青斌 , 丰志伟 , 陈青全 , 杨涛 . 软式空中加油对接约束力不确定性分析[J]. 航空学报, 2021 , 42(9) : 224517 -224517 . DOI: 10.7527/S1000-6893.2020.24517

Abstract

In the process of hose-drogue aerial refueling, the maximum binding force between the drogue and probe can cause detachment of the docking point and fracture of the hose, and even lead to safety accidents. In this paper, to study the dynamic characteristics of the hose-drogue assembly in the oil transportation process, a multi-body dynamic model of the rigid-flexible-liquid coupling of the refueling system is established by using the ALE-ANCF fluid transportation pipeline model as well as the multi-body modeling method. To quantify the expected range of the binding force under the condition of parameter uncertainty, a fast uncertainty analysis method that combines the polynomial chaos method and the dynamic model is proposed. The expected range of docking constraint force is obtained when the flight speed, length of hose, and relative velocity of two aircraft are uncertain at different altitudes. Numerical simulation results show that when there is relative motion between the receiver and the tanker, the expected maximum pressure, shear force, and bending moment at the specific section of the probe greatly increase by 50%, 272%, and 772%, respectively.

参考文献

[1] 陆宇平, 杨朝星, 刘洋洋. 空中加油系统的建模与控制技术综述[J]. 航空学报, 2014, 35(9):2375-2389. LU Y P, YANG C X, LIU Y Y. A survey of modeling and control technologies for aerial refueling system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2375-2389(in Chinese).
[2] 费伦, 段海滨, 徐小斌, 等. 基于变权重变异鸽群优化的无人机空中加油自抗扰控制器设计[J]. 航空学报, 2020, 41(1):323490. FEI L, DUAN H B, XU X B, et al. ADRC controller design for UAV based on variable weighted mutant pigeon inspired optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):323490(in Chinese).
[3] BOLKCOM C. Air force aerial refueling methods:Flying boom versus hose and drogue:CRS Report for Congress RL32910[R]. Washington, D.C.:The Library of Congress, 2006.
[4] VASSBERG J, YEH D, BLAIR A, et al. Dynamic characteristics of a KC-10 wing-pod refueling hose by numerical simulation[C]//20th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2002:2712.
[5] 胡孟权, 柳平, 聂鑫, 等. 大气紊流对空中加油软管锥套运动的影响[J]. 飞行力学, 2010, 28(5):20-23. HU M Q, LIU P, NIE X, et al. Influence of air turbulence on the movement of hose-drogue[J]. Flight Dynamics, 2010, 28(5):20-23(in Chinese).
[6] RO K, KAMMAN J W. Modeling and simulation of hose-paradrogue aerial refueling systems[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1):53-63.
[7] WANG H T, DONG X M, XUE J P, et al. Dynamic modeling of a hose-drogue aerial refueling system and integral sliding mode backstepping control for the hose whipping phenomenon[J]. Chinese Journal of Aeronautics, 2014, 27(4):930-946.
[8] 王海涛, 董新民, 郭军, 等. 空中加油软管锥套组合体甩鞭现象动力学建模与分析[J]. 航空学报, 2015, 36(9):3116-3127. WANG H T, DONG X M, GUO J, et al. Dynamics modeling and analysis of hose whipping phenomenon of aerial refueling hose-drogue assembly[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):3116-3127(in Chinese).
[9] LIU Z J, LIU J K, HE W. Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint[J].Automatica, 2017, 77:302-310.
[10] LIU Z J, HE X Y, ZHAO Z J, et al. Vibration control for spatial aerial refueling hoses with bounded actuators[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5):4209-4217.
[11] ZHU Z H, MEGUID S A.Elastodynamic analysis of aerial refueling hose using curved beam element[J]. AIAA Journal, 2006, 44(6):1317-1324.
[12] 刘钒. 飞行器拖曳系统气动特性数值模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2014:9-33. LIU F. Numerical simulation research on the aerodynamic characteristics of aerial towed cable system[D].Mianyang:China Aerodynamics Research and Development Center, 2014:9-33(in Chinese).
[13] SHABANA A A, HUSSIEN H A, ESCALONA J L. Application of the absolute nodal coordinate formulation to large rotation and large deformation problems[J]. Journal of Mechanical Design, 1998, 120(2):188-195.
[14] 田强, 张云清, 陈立平, 等. 柔性多体系统动力学绝对节点坐标方法研究进展[J]. 力学进展, 2010, 40(2):189-202. TIAN Q, ZHANG Y Q, CHEN L P, et al.Advances in the absolute nodal coordinate method for the flexible multibody dynamics[J]. Advances in Mechanics, 2010, 40(2):189-202(in Chinese).
[15] 洪迪峰. 一维移动介质的多体动力学建模方法研究[D]. 北京:清华大学, 2011:48-53. HONG D F. Multibody dynamic modeling of the linear moving medium[D]. Beijing:Tsinghua University, 2011:48-53(in Chinese).
[16] SANDU A, SANDU C, AHMADIAN M. Modeling multibody systems with uncertainties. part I:Theoretical and computational aspects[J]. Multibody System Dynamics, 2006, 15(4):369-391.
[17] GERSTMAYR J, SHABANA A A. Analysis of thin beams and cables using the absolute nodal co-ordinate formulation[J]. Nonlinear Dynamics, 2006, 45(1-2):109-130.
[18] 徐芝纶. 弹性力学[M]. 4版. 北京:高等教育出版社, 2006:63-67. XU Z L.Elastic mechanics[M].4th. Beijing:Higher Education Press, 2006:63-67(in Chinese).
[19] ESCALONA J L, HUSSIEN H A, SHABANA A A. Application of the absolute nodal coordinate formulation to multibody system dynamics[J]. Journal of Sound and Vibration, 1998, 214(5):833-851.
[20] 孙加亮, 田强, 胡海岩. 多柔体系统动力学建模与优化研究进展[J]. 力学学报, 2019, 51(6):1565-1586. SUN J L, TIAN Q, HU H Y. Advances in dynamic modeling and optimization of flexible multibody systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6):1565-1586(in Chinese).
[21] 田强, 张云清, 陈立平, 等. 柔性多体系统动力学绝对节点坐标方法研究进展[J]. 力学进展, 2010, 40(2):189-202. TIAN Q, ZHANG Y Q, CHEN L P, et al. Advances in the absolute nodal coordinate method for the flexible multibody dynamics[J]. Advances in Mechanics, 2010, 40(2):189-202(in Chinese).
[22] CHOROBA P. Comprehensive study of the wake vortex phenomena to the assessment of its incorporation to ATM for safety and capacity improvements[D]. Zilina:University of Zilina, 2006:1-184.
[23] 张庆宇. 飞机尾涡的多普勒激光雷达识别方法研究[D]. 广汉:中国民用航空飞行学院, 2019:12-15. ZHANG Q Y. Aircraft wake vortex recognition method based on Doppler lidar[D].Guanghan:Civil Aviation Flight University of China, 2019:12-15(in Chinese).
[24] DOGAN A, LEWIS T A, BLAKE W. Flight data analysis and simulation of wind effects during aerial refueling[J]. Journal of Aircraft, 2008, 45(6):2036-2048.
[25] 陈远鑫. 锥套式空中加油管收放动力学仿真[D]. 长沙:国防科技大学, 2016:46-47. CHEN Y X. Numerical simulation of hose-drogue release and retraction dynamics[D]. Changsha:National University of Defense Technology, 2016:46-47(in Chinese).
[26] DELISI D, GREENE G, ROBINS R, et al. Aircraft wake vortex core size measurements[C]//21 st AIAA Applied Aerodynamics Conference. Reston:AIAA, 2003:3811.
[27] 彭程. 空中加油软管收放过程中动态特性研究[D]. 南京:南京航空航天大学, 2018:27-28. PENG C. Research on dynamic characteristics of aerial refueling hose in deployment and retrieval process[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018:27-28(in Chinese).
[28] BLOY A W, KHAN M M. Modelling of the hose and drogue in air-to-air refuelling[J]. The Aeronautical Journal, 2002, 106(1055):17-26.
[29] 颜庆津. 数值分析[M]. 3版. 北京:北京航空航天大学出版社, 2006:164-174. YAN Q J.Numerical analysis[M]. 3rd.Beijing:Beihang University, 2006:164-174(in Chinese).
[30] 刘延柱, 潘振宽, 戈新生. 多体系统动力学[M]. 2版. 北京:高等教育出版社, 2014. LIU Y Z, PAN Z K, GE X S. Dynamics of multibody systems[M].2nd.Beijing:Higher Education Press, 2014(in Chinese).
[31] PENCE B L, FATHY H K, STEIN J L. Recursive maximum likelihood parameter estimation for state space systems using polynomial chaos theory[J].Automatica, 2011, 47(11):2420-2424.
[32] 凌锋. 基于多项式混沌方法的汽车悬架系统不确定性研究[D]. 武汉:华中科技大学, 2013:15-22. LING F. Uncertainty analysis of vehicle suspension systems based on polynomial chaos methods[D]. Wuhan:Huazhong University of Science and Technology, 2013:15-22(in Chinese).
[33] 邰永敢. 基于多项式混沌展开的桥梁结构动力特性不确定性量化[D]. 合肥:合肥工业大学, 2019. TAI Y G. Uncertainty quantification of dynamic characteristics of bridge structures based on polynomial chaos expansion[D]. Hefei:Hefei University of Technology, 2019(in Chinese).
[34] 皮霆, 张云清, 吴景铼. 基于多项式混沌方法的柔性多体系统不确定性分析[J]. 中国机械工程, 2011, 22(19):2341-2343, 2348. PI T, ZHANG Y Q, WU J L. Uncertainty analysis of flexible multibody systems using polynomial chaos methods[J]. China Mechanical Engineering, 2011, 22(19):2341-2343, 2348(in Chinese).
[35] HERZOG M, GILG A, PAFFRATH M, et al.Intrusive versus non-intrusive methods for stochastic finite elements, from nano to space[M]. Berlin:Springer Berlin Heidelberg, 2008:161-174.
文章导航

/