空天往返飞行器制导控制技术专栏

虚拟多触角探测的高超声速滑翔飞行器再入机动制导

  • 高杨 ,
  • 蔡光斌 ,
  • 徐慧 ,
  • 杨小冈 ,
  • 张胜修
展开
  • 1. 火箭军工程大学 导弹工程学院, 西安 710025;
    2. 西北工业大学 航天学院, 西安 710072

收稿日期: 2019-12-04

  修回日期: 2020-02-05

  网络出版日期: 2020-12-01

基金资助

国家自然科学基金(61773387)

Reentry maneuver guidance of hypersonic glide vehicle under virtual multi-tentacle detection

  • GAO Yang ,
  • CAI Guangbin ,
  • XU Hui ,
  • YANG Xiaogang ,
  • ZHANG Shengxiu
Expand
  • 1. College of Missile Engineering, Rocket Force University of Engineering, Xi'an 710025, China;
    2. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2019-12-04

  Revised date: 2020-02-05

  Online published: 2020-12-01

Supported by

National Natural Science Foundation of China (61773387)

摘要

针对高超声速滑翔飞行器再入过程中面对的多约束问题,提出一种基于虚拟多触角探测的路航点规划机动制导策略。该机动制导策略通过飞行器最大转弯轨迹计算速度-剩余地面距离-航向角约束,在分段定点模式中发出多条粗略预测触角,引用触角末端反馈的信息计算优先级以确定临时路航点;同时在机动制导模式中发出精细探测触角,计算触角末端信息优先级,经倾侧角延时滤波器得出控制指令,对飞行器进行机动制导。基于多触角探测的路航点规划机动制导策略,降低了三触角机动制导方法中的计算时间;同时,4种典型禁飞区条件下的仿真结果表明,该策略能够有效稳定地解决机动制导过程中的多约束问题。

本文引用格式

高杨 , 蔡光斌 , 徐慧 , 杨小冈 , 张胜修 . 虚拟多触角探测的高超声速滑翔飞行器再入机动制导[J]. 航空学报, 2020 , 41(11) : 623703 -623703 . DOI: 10.7527/S1000-6893.2019.23703

Abstract

Aiming at the multi-constraint problem faced by hypersonic glide vehicles during reentry, a maneuver guidance strategy for route planning based on multi-tentacle detection is proposed. The maneuver guidance strategy calculates the speed-remaining ground distance-heading angle constraint through the maximum turning trajectory of the aircraft, sends out a plurality of rough prediction tentacle in a segmented fixed-point mode, and calculates the priority by referring to information fed back by the tail end of the tentacle to determine a temporary road navigation point; At the same time, in the maneuver guidance mode, it sends out the fine probe tentacle, calculates the priority of tentacle end information, and obtains the control command through the bank angle delay filter to maneuver the aircraft. The maneuver guidance strategy for route planning based on multi-tentacle detection reduces the calculation time in the three-tentacle maneuver guidance method. At the same time, the simulation results under four typical no-fly zones show that the strategy can effectively and stably solve the multi-constraint problem in the maneuvering guidance process.

参考文献

[1] HARPOLD J C, GRAVES C A J. Shuttle entry guidance[J]. Journal of the Astronautical Sciences, 1978, 27(3):239-268.
[2] 卜祥伟. 高超声速飞行器控制研究进展[J]. 航空兵器,2018(1):47-61. PU X W. Progress on flight control of hypersonic flight vehicles[J]. Aero Weaponry, 2018(1):47-61(in Chinese).
[3] 高杨, 蔡光斌, 张胜修, 等. 多禁飞区高超声速滑翔飞行器再入机动制导[J]. 兵器装备工程学报, 2019,40(8):32-39. GAO Y, CAI G B, ZHANG S X, et al. Reentry maneuver guidance for hypersonic glide vehicle under multiple no-fly zones[J]. Journal of Equipment Engineering, 2019, 40(8):32-39(in Chinese).
[4] GAO Y, CAI G B, YANG X G, et al. Improved tentacle-based guidance for reentry gliding hypersonic vehicle with no-fly zone constraint[J]. IEEE Access, 2019,7:119246-119258.
[5] 方洋旺, 柴栋, 毛东辉,等. 吸气式高超声速飞行器制导与控制研究现状及发展趋势[J]. 航空学报, 2014, 35(7):1776-1786. FANG Y W,CHAI D, MAO D H. et.al. Status and development trend of the guidance and control for hypersonic vehicle[J]. Acta Aeronautica Astronautica Sinica, 2014, 35(7):1776-1786(in Chinese).
[6] 姚郁, 郑天宇, 贺风华, 等. 飞行器末制导中的几个热点问题与挑战[J]. 航空学报, 2015, 36(8):2696-2716. YAO Y, ZHENG T Y, HE F H, et al. Several hot issues and challenges in terminal guidance of flight vehicles[J]. Acta Aeronautica Astronautica Sinica, 2015, 36(8):2696-2716(in Chinese).
[7] 黄汉斌, 梁禄扬, 杨业. 基于阻力加速度倒数剖面的再入轨迹规划与制导方法[J]. 航空学报, 2018, 39(12):322558. HUANG H B, LIANG L Y, YANG Y. Reentry trajectory planning and guidance method based on inverse drag acceleration[J]. Acta Aeronautica Astronautica Sinica, 2018, 39(12):322558(in Chinese).
[8] 穆凌霞, 王新民, 谢蓉, 等. 高超音速飞行器及其制导控制技术综述[J]. 哈尔滨工业大学学报, 2019, 51(3):1-14. MU L X, WANG X M, XIE R, et al. A survey of the hypersonic flight vehicle and its guidance and control technology[J]. Journal of Harbin Institute of Technology, 2019, 51(3):1-14(in Chinese).
[9] 彭悟宇, 杨涛, 王常悦, 等. 高超声速伸缩翼变形飞行器轨迹多目标优化[J]. 国防科技大学学报, 2019, 41(1):41-47. PENG W Y, YANG T, WANG C Y, et al. Trajectory multi-objective optimization for hypersonic telescope wing morphing aircraft[J]. Journal of National University of Defense Technology, 2019, 41(1):41-47(in Chinese).
[10] 张合新, 宫梓枫, 蔡光斌, 等. 复杂约束条件下高超声速飞行器再入轨迹优化[J]. 兵器装备工程学报, 2019, 40(1):7-12. ZHANG H X, GONG Z F, CAI G B, et al. Reentry tracking control of hypersonic vehicle with complicated constraints[J]. Journal of Equipment Engineering, 2019, 40(1):7-12(in Chinese).
[11] 陈磊, 唐国金, 雍恩米. 飞行器轨迹优化数值方法综述[J]. 宇航学报, 2008, 29(2):397-406. CHEN L, TANG G J, YANG E M. A survey of numerical methods for trajectory optimization of spacecraft[J]. Journal of Astronautics, 2008, 29(2):397-406(in Chinese).
[12] LU P. Entry guidance:A unified method[J]. Journal of Guidance Control and Dynamics, 2014, 37(3):713-728.
[13] 宋超, 黎志强, 刘旭. 考虑航路点的飞行器再入轨迹优化与仿真[J]. 航空计算技术, 2019, 49(1):19-23. SONG C, LI Z Q, LIU X. Reentry trajectory optimization and simulation of aircraft with waypoints considered[J]. Aeronautical Computing Technique, 2019, 49(1):19-23(in Chinese).
[14] ROENNEKE A J, MARKL A, Re-entry control to a drag-vs-energy profile[J]. Journal of Guidance, Control, and Dynamics,1994, 17(5):916-920.
[15] MEASE K D, CHEN D T, TEUFEL P, et al. Reduced-order entry trajectory planning for acceleration guidance[J]. Journal of Guidance Control and Dynamics, 2002, 25(2):257-266.
[16] XIE Y, LIU L H, TANG G J, et al. Highly constrained entry trajectory generation[J]. Acta Astronautica, 2013, 88(3):44-60.
[17] LIANG Z X, DUAN G F, REN Z. Mars entry guidance based on an adaptive reference drag profile[J]. Advances in Space Research, 2017, 60(3):692-701.
[18] LIANG Z X, REN Z, LI Q D. Evolved atmospheric entry corridor with safety factor[J]. Acta Astronautica, 2018, 143(1):82-91.
[19] 刘莉, 李怀建. 机载布撒器滑翔方案弹道优化与方案弹道库设计[J]. 弹箭与制导学报, 2004, 24(3):61-64. LIU L, LI H J. The project trajectory optimization of airborne dispenser and the design of trajectory database[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2004, 24(3):61-64(in Chinese).
[20] 路钊. 高超声速飞行器再入末段轨迹在线优化[D]. 哈尔滨:哈尔滨工业大学, 2014. LU Z. Online trajectory optimization for the terminal stage of reentry hypersonic vehicle[D]. Harbin:Harbin Institute of Technology, 2014.
[21] 段广仁, 谭峰, 路钊, 等. 一种高超声速飞行器的有限时间轨迹快速生成方法:中国, 201410216389.3[P]. 2014-05-20. DUAN G R, TAN F, LU Z, et al. A fast finite time trajectory generation method for hypersonic vehicle:China, 201410216389.3[P]. 2014-05-20(in Chinese).
[22] FAIZ N, AGRAWAL S K, MURRAY R M. Trajectory planning of differentially flat systems with dynamics and inequalities[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2):219-227.
[23] ZHANG H, WANG H, LI N, et al. Time-optimal memetic whale optimization algorithm for hypersonic vehicle reentry trajectory optimization with no-fly zones[J]. Neural Computing and Applications, 2020,32:2735-2749.
[24] YANG H J, ZHAO Y J. Trajectory planning for autonomous aerospace vehicles amid known obstacles and conflicts[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6):997-1008.
[25] SEYWALD H, CLIFF E M. Neighboring optimal control based feedback law for the advanced launch system[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(6):1154-1162.
[26] JORRIS T R. Common aero vehicle autonomous reentry trajectory optimization satisfying waypoint and no-fly zone constraints[J]. Dissertations & Theses-Gradworks, 2007.
[27] JORRIS T R, COBB R G. Multiple method 2-D trajectory optimization satisfying waypoints and no-fly zone constraints[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3):543-553.
[28] 高长生,陈尔康,荆武兴. 高超声速飞行器机动规避轨迹优化[J]. 哈尔滨工业大学学报, 2017, 49(4):16-21. GAO C S, CHEN E K, JING W X. Maneuver evasion trajectory optimization for hypersonic vehicles[J]. Journal of Harbin Institute of Technology, 2017, 49(4):16-21(in Chinese).
[29] 国海峰, 黄长强, 丁达理, 等. 高超声速滑翔式飞行器突防轨迹优化研究[J]. 电光与控制, 2014, 21(8):42-46,67. GUO H F, HUANG C Q, DING D L, et al. On penetration trajectory optimization for the hypersonic gliding aircraft[J]. Electronics Optics & Control, 2014, 21(8):42-46,67(in Chinese).
[30] LIANG Z X, REN Z. Tentacle-based guidance for entry flight with no-fly zone constraint[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(4):991-1000.
[31] CHERUBINI A, SPINDLER F, FRANÇOIS C. A new tentacles-based technique for avoiding obstacles during visual navigation[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press 2012.
[32] CHERUBINI A, SPINDLER F, CHAUMETTE F. Autonomous visual navigation and laser-based moving obstacle avoidance[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5):2101-2110.
[33] WANG Y L, TANG W, ZHANG Y, et al. Geometry parameterization and aerodynamic analysis of a common aero vehicle[J]. Acta Aerodynamica Sinica, 2007, 25(3):368-371.
[34] VINH N X, BUSEMANN A, CULP R D. Hypersonic and planetary entry flight mechanics[M]. Anna Arbor:the University of Michigan Press, 1980, 19-28.
[35] PHILLIPS T H, A common aero vehicle (CAV) model, description, and employment guide[R]. Arlington:Schafer Corporation for Air Force Research Laboratory and Air Force Space Command, 2003.
[36] CHAPMAN D R. An approximate analytical method for studying entry into planetary atmospheres:TN-4276[R].Washington, D.C.:National Advisory Committee for Aeronautics, 1958.
[37] 雍恩米, 唐国金, 陈磊. 基于Gauss伪谱方法的高超声速飞行器再入轨迹快速优化[J]. 宇航学报, 2008, 29(6):1766-1772. YONG E M, TANG G J, CHEN L. Rapid trajectory optimization for hypersonic reentry vehicle via Gauss pseudospectral method[J]. Journal of Astronautics, 2008, 29(6):1766-1772(in Chinese).
[38] PATTERSON M A, RAO A V. GPOPS-II:A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive gaussian quadrature collocation methods and sparse nonlinear programming[J]. ACM Transactions on Mathematical Software, 2014, 41(1):1-37.
[39] SHEN Z J, LU P. Onboard generation of three-dimensional constrained entry trajectories[J]. Journal of Guidance Control and Dynamics, 2003, 26(1):111-121.
[40] JOHN T B. Practical methods for optimal control using nonlinear programming[M]. Philadelphia:SIAM, 2001:247-256.
文章导航

/