论文

基于改进Jacobian-Torsor理论的转子组件装配精度控制方法

  • 丁司懿 ,
  • 郑小虎
展开
  • 东华大学 机械工程学院, 上海 201620

收稿日期: 2020-08-26

  修回日期: 2020-10-09

  网络出版日期: 2020-11-27

基金资助

国家自然科学基金(51805079);中央高校基本科研业务费专项资金(19D110322);河南省机械装备智能制造重点实验室开放基金(郑州轻工业大学)(IM201905)

Precision control of rotor assembly based on improved Jacobian-Torsor theory

  • DING Siyi ,
  • ZHENG Xiaohu
Expand
  • School of Mechanical Engineering, Donghua University, Shanghai 201620, China

Received date: 2020-08-26

  Revised date: 2020-10-09

  Online published: 2020-11-27

Supported by

National Natural Science Foundation of China (51805079); Fundamental Research Funds for the Central Universities (19D110322); Open Project of Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry (IM201905)

摘要

转子装配是航空发动机制造过程的核心环节,防止同心度超差是转子组件装配需要解决的重要问题。传统方法以千分表人工手动测试为主,依赖制造经验,缺乏系统、定量的结构精度设计理论方法支撑。针对转子的回转特性和多级装配特点,提出了基于改进的雅可比旋量理论的三维偏差建模方法和组合堆叠同心度控制策略,通过引入回转副有效表征了航空发动机转子零件的回转特性,确定了雅可比扩展矩阵和同心度偏差传递函数及其控制方程。结合该方程,对某4级涡轮转子装配进行验证,当各级安装角度分别为3.513 rad、5.206 rad和0.953 rad时,可获得最高同心度0.042 mm。结果表明该模型可以有效预测组件整体精度和确定最佳装配方案,具备较强现实指导意义。

本文引用格式

丁司懿 , 郑小虎 . 基于改进Jacobian-Torsor理论的转子组件装配精度控制方法[J]. 航空学报, 2021 , 42(10) : 524670 -524670 . DOI: 10.7527/S1000-6893.2020.24670

Abstract

Rotor assembly is a core process in aero-engine manufacturing. In rotor assembly, preventing out-of-tolerance of concentricity is the primary problem needed to be solved. Traditional methods for the problem are based on manual test with the dial indicator, which depends on experience appraises and lacks a systematic and quantitative structural precision design theory. In this paper, revolving characteristics and multistage assembly characteristics of rotors are discussed. A three dimensional deviation modeling method based on the improved Jacobian-Torsor theory and a concentricity control strategy are proposed. A revolution joint is introduced to represent the revolving characteristics of aero-engine rotors. Then the extended Jacobian matrix is derived and thus a correction of the original J-T model is completed. The concentricity variation propagation function of multistage rotor stacking is further determined, and the control equation for concentricity is derived. Based on the model, a four-stage rotor assembly is verified. The best concentricity is 0.042 mm when the optimal installation angles are 3.513 rad, 5.206 rad, and 0.953 rad. The results show that the model can effectively predict the overall precision and determine the optimal assembly plan, and has strong significance in engineering practice.

参考文献

[1] 潘国威, 陈文亮, 王珉. 应用于飞机装配的并联机构技术发展综述[J]. 航空学报, 2019, 40(1):522572. PAN G W, CHEN W L, WANG M. A review of parallel kinematic mechanism technology for aircraft assembly[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522572(in Chinese).
[2] JAYAWEERA N, WEBB P, JOHNSON C. Measurement assisted robotic assembly of fabricated aero-engine components[J]. Assembly Automation, 2010, 30(1):56-65.
[3] 张宏献, 李学军, 蒋玲莉, 等. 航空发动机双转子系统不对中研究进展[J]. 航空学报, 2019, 40(6):022717. ZHANG H X, LI X J, JIANG L L, et al. A review of misalignment of aero-engine rotor system[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):022717(in Chinese).
[4] 谭久彬, 孙传智, 王雷, 等. 基于空间矢量投影的航空发动机转子装配方法与装置:CN103790644B[P]. 2015-07-29. TAN J B, SUN C Z, WANG L, et al. Aircraft engine rotor assembling method and device based on space vector projection:CN103790644B[P]. 2015-07-29(in Chinese).
[5] YANG Z, HUSSAIN T, POPOV A A, et al. A comparison of different optimization techniques for variation propagation control in mechanical assembly[J]. IOP Conference Series:Materials Science and Engineering, 2011, 26:012017.
[6] YANG Z, HUSSAIN T, POPOV A A, et al. Novel optimization technique for variation propagation control in an aero-engine assembly[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2011, 225(1):100-111.
[7] MEMON M, HUSSAIN T, MEMON Z A. Minimizing assembly errors by selecting optimum assembly sequence in the assembly of a rigid circular structure[J]. Mehran University Research Journal of Engineering and Technology, 2012, 31(4):743-754.
[8] HUSSAIN T, MCWILLIAM S, POPOV A A, et al. Geometric error reduction in the assembly of axi-symmetric rigid components:A two-dimensional case study[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2012, 226(7):1259-1274.
[9] HUSSAIN T, YANG Z, POPOV A A, et al. Straight-build assembly optimization:A method to minimize stage-by-stage eccentricity error in the assembly of axisymmetric rigid components (two-dimensional case study)[J]. Journal of Manufacturing Science and Engineering, 2011, 133(3):031014.
[10] YANG Z, POPOV A A, MCWILLIAM S. Variation propagation control in mechanical assembly of cylindrical components[J]. Journal of Manufacturing Systems, 2012, 31(2):162-176.
[11] YANG Z, MCWILLIAM S, POPOV A A, et al. A probabilistic approach to variation propagation control for straight build in mechanical assembly[J]. The International Journal of Advanced Manufacturing Technology, 2013, 64(5-8):1029-1047.
[12] ALISON M. System and method for improving the damage tolerance of a rotor assembly:EP2525049[P]. 2012-11-21.
[13] 郭恩明. 航空先进制造技术发展趋势[J]. 航空制造技术, 2007(增刊1):1-5. GUO E M. Development trend of advanced aeronautical manufacturing[J]. Aeronautical Manufacturing Technology, 2007(Suppl.1):1-5(in Chinese).
[14] 李伟楠, 朱宁, 石宏, 等. 航空发动机盘类转子柔性装配工装构型研究[J]. 沈阳航空航天大学学报, 2013, 30(3):6-9. LI W N, ZHU N, SHI H, et al. Study on the configuration of flexible assembly tooling for aero-engine discoid rotors[J]. Journal of Shenyang Aerospace University, 2013, 30(3):6-9(in Chinese).
[15] 胡家喜, 周来水, 卫炜, 等. 面向航空发动机工装快速设计系统的信息模型研究[J]. 制造业自动化, 2010, 32(14):26-29. HU J X, ZHOU L S, WEI W, et al. Research on information model of tooling rapid design for aircraft engines[J]. Manufacturing Automation, 2010, 32(14):26-29(in Chinese).
[16] 张逸飞. 激光跟踪仪快速跟踪测量关键技术研究[D]. 哈尔滨:哈尔滨工业大学, 2015. ZHANG Y F. Study on rapid tracking and measurement of laser tracker[D]. Harbin:Harbin Institute of Technology, 2015(in Chinese).
[17] 孟书广. 航空发动机复杂零部件的新型测量技术[J]. 航空制造技术, 2014, 57(13):32-35. MENG S G. New metrology technique for complex components of aero-engine[J]. Aeronautical Manufacturing Technology, 2014, 57(13):32-35(in Chinese).
[18] 徐延锋. 航空发动机装配数字化关键技术研究与实现[D]. 西安:西北工业大学, 2006. XU Y F. Research on key technology for digital assembly based on aero-engine[D]. Xi'an:Northwestern Polytechnical University, 2006(in Chinese).
[19] 王成恩, 于宏, 张闻雷, 等. 面向对象的航空发动机装配模型[J]. 计算机集成制造系统, 2010, 16(5):942-948. WANG C E, YU H, ZHANG W L, et al. Object-oriented aero-engine assembly models[J]. Computer Integrated Manufacturing Systems, 2010, 16(5):942-948(in Chinese).
[20] 陈雪峰, 张小丽, 程礼, 等. 一种航空发动机转子装配性能检测方法:CN101799354B[P]. 2012-03-28. CHEN X F, ZHANG X L, CHENG L, et al. Method for testing assembly performance of rotor of aircraft engine:CN101799354B[P]. 2012-03-28(in Chinese).
[21] 张子阳, 谢寿生, 彭靖波, 等. 基于非线性阻尼的航空发动机高压转子拉杆结构装配检测方法[J]. 航空学报, 2012, 33(3):470-478. ZHANG Z Y, XIE S S, PENG J B, et al. Assembly variation detection for rod fastening rotor of high pressure spool in aero-engine based on nonlinear damping identification[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3):470-478(in Chinese).
[22] 曹茂国. 多级盘结构转子的工艺装配优化设计方法[J]. 航空发动机, 1994(3):48-52. CAO M G. Optimization design method for rotor assembly process with multistage disk structure[J]. Aeroengine, 1994(3):48-52(in Chinese).
[23] DESROCHERS A, GHIE W, LAPERRIERE L. Application of a unified Jacobian-Torsor model for tolerance analysis[J]. Journal of Computing and Information Science in Engineering, 2003, 3(1):2-14.
[24] CLÉMENT A, RIVIōRE A, SERRÉ P, et al. The TTRS:13 constraints for dimensioning and tolerancing[C]//Geometric Design Tolerancing Theories, Standards and Applications. Berlin:Springer, 1998:122-131.
[25] HERVÉ J M. Analyse structurelle des mécanismes par groupe des déplacements[J]. Mechanism and Machine Theory, 1978, 13(4):437-450.
[26] ROY U, LI B. Representation and interpretation of geometric tolerances for polyhedral objects. II. Size, orientation and position tolerances[J]. Computer-Aided Design, 1999, 31(4):273-285.
[27] 何光宇, 刘新学, 尉询楷, 等. 对遗传算法参数选取的讨论[C]//中国青年运筹与管理者大会. 南京:中国运筹学会, 2005:12-17. HE G Y, LIU X X, YU X K, et al. Discussion on the parameter selection of genetic algorithm[C]//China Youth Operations and Management Conference. Nanjing:Operations Research Society of China, 2005:12-17(in Chinese).
[28] 席裕庚, 柴天佑, 恽为民. 遗传算法综述[J]. 控制理论与应用, 1996, 13(6):697-708. XI Y G, CHAI T Y, YUN W M. Survey on genetic algorithm[J]. Control Theory & Applications, 1996, 13(6):697-708(in Chinese).
文章导航

/