论文

大范围收敛的摄动Lambert问题新型解法:拟线性化-局部变分迭代法

  • 冯浩阳 ,
  • 岳晓奎 ,
  • 汪雪川
展开
  • 1. 西北工业大学 航天飞行动力学技术国家级重点实验室, 西安 710072;
    2. 西北工业大学 航天学院, 西安 710072

收稿日期: 2020-09-01

  修回日期: 2020-09-18

  网络出版日期: 2020-11-13

基金资助

国家自然科学基金(11972026);中央高校基本科研业务费专项资金(3102020HTXS002);装备预研重点实验室基金(6142210200309)

A novel quasi linearization-local variational iteration method with large convergence domain for solving perturbed Lambert's problem

  • FENG Haoyang ,
  • YUE Xiaokui ,
  • WANG Xuechuan
Expand
  • 1. National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2020-09-01

  Revised date: 2020-09-18

  Online published: 2020-11-13

Supported by

National Natural Science Foundation of China (11972026); Fundamental Research Funds for the Central Universities (3102020HTXS002);Foundation of Key Laboratory of Equipment Pre-research (6142210200309)

摘要

研究实时、高效、稳定性强的高性能空间轨道计算方法对于中国未来航天工程具有重大应用价值。针对强非线性系统的多维两点边值问题,提出了一种拟线性化-局部变分迭代法(QL-LVIM),通过拟线性化(QL)思想,将非线性两点边值问题转化为一系列具有一定迭代格式,并且成对出现的初值问题,进而通过局部变分迭代法(LVIM)对其进行求解。利用拟线性化的大范围收敛特性和局部变分迭代法的快收敛、高精度特性,该方法能够在较大的时间和空间尺度下快速精确获得摄动Lambert问题的初速度和转移轨道,其收敛域远大于传统的牛顿打靶法,为航天器轨道转移提供了一种简便高效、稳定性强的新型计算方法。在不同轨道情形下,与几类参考方法对比,结果表明本方法能够在计算效率方面实现大幅提升,并且能够在大范围内实现快速收敛。方法的有效性在地-月系三体问题中得到了进一步验证。

本文引用格式

冯浩阳 , 岳晓奎 , 汪雪川 . 大范围收敛的摄动Lambert问题新型解法:拟线性化-局部变分迭代法[J]. 航空学报, 2021 , 42(11) : 524699 -524699 . DOI: 10.7527/S1000-6893.2020.24699

Abstract

Research on real-time, efficient, and stable orbit computational method has significant application value to China's future space engineering. A novel Quasi Linearization-Local Variational Iteration Method (QL-LVIM) for solving the multidimensional two-point boundary-value problems of strongly nonlinear systems is proposed. With the Quasi Linearization (QL) method, the nonlinear two-point boundary-value problem is transformed into a series of iterative initial value problems which appear in pairs. Then, these initial value problems are solved with the Local Variational Iteration Method (LVIM). Combining wide convergence of the Quasi Linearization method and rapid convergence and high precision of the Local Variational Iteration Method, the proposed algorithm can precisely and efficiently obtain the accurate initial velocity and transfer orbit of the perturbed Lambert's problem in large time and space scales. The convergence domain of the QL-LVIM is much wider than that of the traditional Newton's shooting method. It provides a convenient, efficient and stable algorithm for calculating the transfer orbit of spacecraft. Comparisons are made with several reference methods under different orbit circumstances. The results illustrate that the QL-LVIM can not only significantly improve the calculation efficiency, but also provide a much wider convergence domain. Validity of the proposed algorithm is further verified by solving a three-body problem in the Earth-Moon system.

参考文献

[1] ANDREW A L, ROBERTS S M, SHIPMAN J S. Two-point boundary value problems:Shooting methods[J]. Technometrics, 1975, 17(2):277.
[2] HA S N. A nonlinear shooting method for two-point boundary value problems[J]. Computers & MathematicsWith Applications, 2001, 42(10-11):1411-1420.
[3] MORRISON D D, RILEY J D, ZANCANARO J F. Multipleshooting method for two-point boundary value problems[J]. Communications of the ACM, 1962, 5(12):613-614.
[4] 彭坤, 彭睿, 黄震, 等. 求解最优月球软着陆轨道的隐式打靶法[J]. 航空学报, 2019, 40(7):322641. PENG K, PENGR, HUANG Z, et al. Implicit shooting method to solve optimal Lunar soft landing trajectory[J]. ACTA Acta Aeronautica et Astronautica Sinica, 2019, 40(7):322641.
[5] NA T Y. Transforming boundary conditions to initial conditions for ordinary differential equations[J]. SIAM Review, 1967, 9(2):204-210.
[6] NA T Y. An initial value method for the solution of a class of nonlinear equations in fluid mechanics[J]. Journal of Basic Engineering, 1970, 92(3):503-508.
[7] GOODING R H. A procedure for the solution of Lambert's orbital boundary-value problem[J]. Celestial Mechanics and Dynamical Astronomy, 1990, 48(2):145-165.
[8] BATTIN R H. An introduction to the mathematics and methods of astrodynamics, revised edition[M]. Reston:AIAA, 1999.
[9] REINHARDT H J. Analysis of approximation methods for differential and integral equations[M]. New York:Springer New York, 1985.
[10] DONG L, ALOTAIBI A, MOHIUDDINE S A, et al. Computational methods in engineering:A variety of primal & mixed methods, with global & local interpolations, for well-posed or Ill-posed BCs[J]. Computer Modeling in Engineering and Sciences, 2014, 99(1):1-85.
[11] DAI H H, YUE X K, YUAN J P, et al. A time domain collocation method for studying the aeroelasticity of a two dimensional airfoil with a structural nonlinearity[J]. Journal of Computational Physics, 2014, 270:214-237.
[12] CHEN Q F, ZHANG Y D, LIAO S Y, et al. Newton-kantorovich/pseudospectral solution to perturbed astrodynamic two-point boundary-value problems[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2):485-498.
[13] ELGOHARY T A, JUNKINS J L, ATLURI S N. An RBF-collocation algorithm for orbit propagation[C]//AAS/AIAA:Space Flight Mechanics Meeting,2015.
[14] BAI X L, JUNKINS J L. Modified Chebyshev-Picard iteration methods for solution of boundary value problems[J]. The Journal of the Astronautical Sciences, 2011, 58(4):615-642.
[15] WANG X C, YUE X K, DAI H H, et al. Feedback-accelerated Picard iteration for orbit propagation and lambert's problem[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10):2442-2451.
[16] WANG X, ATLURI S N. A unification of the concepts of the variational iteration, adomian decomposition and picard iteration methods; and a local variational iteration method[J]. Computer Modeling in Engineering & Sciences, 2016, 111(6):567-585.
[17] NA T Y. Computational methods in engineering boundary value problems[M]. New York:Academic Press, 1979:70-92.
[18] WANG X C, ATLURI S N. A novel class of highly efficient and accurate time-integrators in nonlinear computational mechanics[J]. Computational Mechanics, 2017, 59(5):861-876.
[19] 汪雪川. 非线性系统的反馈Picard迭代-配点方法及应用[D]. 西安:西北工业大学, 2017:87-106. WANG X C. Feedback picarditeration-collocation method and the applications on astronautical engineering[D]. Xi'an:Northwestern Polytechnical University, 2017:87-106(in Chinese).
[20] 刘林, 胡松杰, 王歆. 航天动力学引论[M]. 南京:南京大学出版社, 2006:21-173. LIU L, HU S J, WANG X. Anintroduction of astrodynamics introduction of astrodynamics[M]. Nanjing:Nanjing University Press, 2006:21-173(in Chinese).
[21] 张大力. 近地空间目标高精度轨道预报算法研究[D]. 哈尔滨:哈尔滨工业大学, 2015:23-25. ZHANG D L. Research on high accuracy orbits predictingalgorithm for near-earth target[D]. Harbin:Harbin Institute of Technology, 2015:23-25(in Chinese).
[22] 王威, 于志坚. 航天器轨道确定:模型与算法[M]. 北京:国防工业出版社, 2007:155-170. WANG W, YU Z J. Spacecraft orbit determination:Models and algorithms[M]. Beijing:National Defense Industry Press, 2007:155-170(in Chinese).
[23] 张斌, 周敬. 基于特征模型的Halo轨道维持控制[J]. 航空学报, 2019, 40(11):323206. ZHANG B, ZHOU J. Characteristic model-based station-keeping control for Halo orbit[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(11):323206(in Chinese).
文章导航

/