流体力学与飞行力学

基于非结构网格有限差分法的扎染算法

  • 刘君 ,
  • 魏雁昕 ,
  • 陈洁
展开
  • 大连理工大学 航空航天学院, 大连 116024

收稿日期: 2020-07-20

  修回日期: 2020-09-18

  网络出版日期: 2020-10-30

基金资助

国家重点研发计划(2018YFB0204404);国家自然科学基金(11872144)

Tie-dye algorithm based on finite difference method for unstructured grid

  • LIU Jun ,
  • WEI Yanxin ,
  • CHEN Jie
Expand
  • School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024, China

Received date: 2020-07-20

  Revised date: 2020-09-18

  Online published: 2020-10-30

Supported by

National Key R&D Program of China (2018YFB0204404); National Natural Science Foundation of China (11872144)

摘要

应用有限差分法时遵循贴体坐标系下离散等价方程的离散准则,格式中仅用到当地网格点的坐标变换系数,据此可以构建新的非结构网格有限差分法,数值算例表明在空间二维情况下用连接离散点的3条网格线构造出来的一阶迎风格式可以稳定收敛。把这种非结构网格有限差分法推广到三维,在4条网格线基础上进行离散计算,然后提出一种局部区域多重网格、重复计算的新算法。首先在包含物体的整个区域采用直角坐标系下的均匀网格进行计算,然后消除物体内部点对物体外部流场区域的影响,最后在物面和直角网格之间很小的局部区域填补非结构网格进行计算,计算过程类似于中国传统的扎染工艺。处理流场内存在曲面物体边界问题时,相较于常规结构网格差分算法,扎染算法尽管在计算中包含需要特殊处理的无用网格点,也存在重复计算的局部区域,但是以这些计算能力的浪费为代价,换取了编程简便、内存量小、网格生成快捷、易于扩展网格规模等优势。定性分析表明,这种扎染算法非常适合研制大规模并行计算,建立的计算流体力学应用软件可以充分发挥数十万至百万处理器核心的超级计算机的效能。

本文引用格式

刘君 , 魏雁昕 , 陈洁 . 基于非结构网格有限差分法的扎染算法[J]. 航空学报, 2021 , 42(7) : 124557 -124557 . DOI: 10.7527/S1000-6893.2020.24557

Abstract

The application of the finite difference method follows the discretization criterion of the discrete equivalent equation in the body fitted coordinate system, and the coordinate transformation coefficient of the local grid points is used in the scheme, enabling the creation of a new finite difference method for unstructured grids. The numerical results show that the first-order upwind scheme constructed by the three-grid lines connecting discrete points can converge stably in two dimensional space. In this paper, we extend this unstructured grid finite difference method to three dimensions. The discrete calculation is performed on four lines, and a new algorithm based on multiple grids in the local area and repetitive calculation is then proposed. Firstly, the calculation is applied to the whole region, which contains the object, using the cartesian-coordinated uniform grid. The second step is to eliminate the influence on the external flow field from the internal points of the object. Finally, the unstructured grid is filled in the small local area between the object surface and the rectangle grid to conduct the calculation. This calculation process is similar to Chinese traditional tie-dye process. Compared with the structured grid finite difference method, the tie-dye algorithm contains some useless grid points which require special treatment, and some local areas are repeatedly calculated. However, its advantages include simple programming, small memory occupation, fast grid-generation, and easy grid-expansion, at the cost of computing capacity waste. Qualitative analysis shows that this tie-dye algorithm is suitable for the development of the parallel computing in a large scale. The computational fluid dynamics application based on this algorithm can fully utilize the efficiency of the supercomputers with hundred thousand to millions of processor cells.

参考文献

[1] 刘君, 邹东阳, 徐春光. 基于非结构动网格的非定常激波装配法[J]. 空气动力学学报, 2015, 33(1):10-16. LIU J, ZOU D Y, XU C G. An unsteady shock-fitting technique based on unstructured moving grids[J]. Acta Aerodynamica Sinica, 2015, 33(1):10-16(in Chinese).
[2] ZOU D Y, XU C G, DONG H B, et al. A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes[J]. Journal of Computational Physics, 2017, 345:866-882.
[3] CHANG S, BAI X, ZOU D, et al. An adaptive discontinuity fitting technique on unstructured dynamic grids[J]. Shock Waves, 2019, 29(8):1103-1115.
[4] 刘君, 韩芳, 夏冰. 有限差分法中几何守恒律的机理及算法[J]. 空气动力学学报, 2018, 36(6):917-926. LIU J, HAN F, XIA B. Mechanism and algorithm for geometric conservation law in finite difference method[J]. Acta Aerodynamica Sinica, 2018, 36(6):917-926(in Chinese).
[5] 刘君, 韩芳. 有限差分法中的贴体坐标变换[J]. 气体物理, 2018, 3(5):18-29. LIU J, HAN F. Body-fitted coordinate transformation for finite difference method[J]. Physics of Gases, 2018, 3(5):18-29(in Chinese).
[6] 刘君, 韩芳. 有关有限差分高精度格式两个应用问题的讨论[J]. 空气动力学学报, 2020, 38(2):244-253. LIU J, HAN F. Discussions on two problems in applications of high-order finite difference schemes[J]. Acta Aerodynamica Sinica, 2020, 38(2):244-253(in Chinese).
[7] 刘君, 陈洁, 韩芳. 基于离散等价方程的非结构网格有限差分法[J]. 航空学报, 2020, 41(1):123248. LIU J, CHEN J, HAN F. Finite difference method for unstructured grid based on discrete equivalent equation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):123248(in Chinese).
[8] STEGER J. Implicit finite difference simulation of flow about arbitrary geometries with application to airfoils[C]//10th Fluid and Plasmadynamics Conference. Reston:AIAA, 1977.
[9] STEGER J L. Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries[J]. AIAA Journal, 1978, 16(7):679-686.
[10] HINDMAN R. Geometrically induced errors and their relationship to the form of the governing equations and the treatment of generalized mappings[C]//5th Computational Fluid Dynamics Conference. Reston:AIAA, 1981.
[11] HINDMAN R G. Generalized coordinate forms of governing fluid equations and associated geometrically induced errors[J]. AIAA Journal, 1982, 20(10):1359-1367.
[12] THOMAS P, LOMBARD C. The geometric conservation law-a link between finite-difference and finite-volume methods of flow computation on moving grids[C]//11th Fluid and Plasma Dynamics Conference. Reston:AIAA, 1978.
[13] THOMAS P D, LOMBARD C K. Geometric conservation law and its application to flow computations on moving grids[J]. AIAA Journal, 1979, 17(10):1030-1037.
[14] VISBAL M R, GAITONDE D V. On the use of higher-order finite-difference schemes on curvilinear and deforming meshes[J]. Journal of Computational Physics, 2002, 181(1):155-185.
[15] 闵耀兵. 高阶精度有限差分方法几何守恒律研究[D]. 绵阳:中国空气动力研究与发展中心, 2015. MIN Y B. The studies on geometric conservation law for high order finite difference method[D]. Mianyang:China Aerodynamics Research and Development Center,2015(in Chinese).
[16] 刘君, 白晓征, 张涵信, 等. 关于变形网格"几何守恒律"概念的讨论[J]. 航空计算技术, 2009, 39(4):1-5. LIU J, BAI X Z, ZHANG H X, et al. Discussion about GCL for deforming grids[J]. Aeronautical Computing Technique, 2009, 39(4):1-5(in Chinese).
[17] 刘君, 刘瑜, 陈泽栋. 非结构变形网格和离散几何守恒律[J]. 航空学报, 2016, 37(8):2395-2407. LIU J, LIU Y, CHEN Z D. Unstructured deforming mesh and discrete geometric conservation law[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2395-2407(in Chinese).
[18] DENG X G, MAO M L, TU G H, et al. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2011, 230(4):1100-1115.
[19] DENG X G, MIN Y B, MAO M L, et al. Further studies on Geometric Conservation Law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2013, 239:90-111.
[20] NONOMURA T, TERAKADO D, ABE Y, et al. A new technique for freestream preservation of finite-difference WENO on curvilinear grid[J]. Computers & Fluids, 2015, 107:242-255.
[21] 朱志斌, 杨武兵, 禹旻. 满足几何守恒律的WENO格式及其应用[J]. 计算力学学报, 2017, 34(6):779-784. ZHU Z B, YANG W B, YU M. A WENO scheme with geometric conservation law and its application[J]. Chinese Journal of Computational Mechanics, 2017, 34(6):779-784(in Chinese).
[22] ZHU Y J, SUN Z S, REN Y X, et al. A numerical strategy for freestream preservation of the high order weighted essentially non-oscillatory schemes on stationary curvilinear grids[J]. Journal of Scientific Computing, 2017, 72(3):1021-1048.
文章导航

/