电子电气工程与控制

战斗机电子战系统架构总体设计

  • 贾朝文 ,
  • 冯兵 ,
  • 鄢勃 ,
  • 杨洋 ,
  • 张学帅 ,
  • 刘翔 ,
  • 李燕平
展开
  • 西南电子设备研究所, 成都 610036

收稿日期: 2020-07-09

  修回日期: 2020-08-01

  网络出版日期: 2020-09-28

Overall design of fighter electronic warfare system architecture

  • JIA Chaowen ,
  • FENG Bing ,
  • YAN Bo ,
  • YANG Yang ,
  • ZHANG Xueshuai ,
  • LIU Xiang ,
  • LI Yanping
Expand
  • Southwest Research Institute of Electronic Equipment, Chengdu 610036, China

Received date: 2020-07-09

  Revised date: 2020-08-01

  Online published: 2020-09-28

摘要

战斗机电子战系统提供的态势感知、无源攻击引导、电子对抗和主动隐身等作战能力可以极大提升飞机的生存力和杀伤力。为满足电子战系统越来越高的新质作战能力要求、作战对象快速能力提升、贴近实战的作战样式和作战环境不断变化带来的新要求、适应不同战斗机平台及航电任务系统要求等需求,追求高质量和敏捷开发模式,电子战系统架构必须精心设计。采用系统工程方法,按照能力视图、作战视图、系统视图和技术视图对需求和技术进行了迭代研究,基于灵活数字处理算法支持不同战法、全域综合共用、以快应变和以柔制变等顶层设计思想,从全数字化处理、综合化、可扩展和开放式等多个视角论证了电子战系统架构设计需求,并给出了核心设计要点和方案。战斗机电子战系统架构在大量实践中得到验证,效果良好,能够满足作战使用需求,对下一代战斗机电子系统的研究具有借鉴意义。

本文引用格式

贾朝文 , 冯兵 , 鄢勃 , 杨洋 , 张学帅 , 刘翔 , 李燕平 . 战斗机电子战系统架构总体设计[J]. 航空学报, 2021 , 42(2) : 324507 -324507 . DOI: 10.7527/S1000-6893.2020.24507

Abstract

The electronic warfare system of fighters can provide combat capacities including situation awareness, passive attack, electronic countermeasure and active stealth, significantly increasing survivability and lethality of fighters. To meet the increasingly higher requirements of the new combat capability of fighter electronic warfare systems, the new requirements brought by the rapid improvement of combat object capability, the combat style close to the actual combat and the continually changing combat environment, and the requirements of different carrier platforms and mission systems, the architecture of the electronic warfare system must be carefully designed. The system engineering method is adopted to research on the requirements and technologies based on OV, CV, SV and TV. On the basis of top-level design concepts including agile-algorithm-process, full-domain-integration, rapid and flexible expansibility to meet variety, the architecture design requirements of the electronic warfare system are discussed from the perspectives of full digital processing, integration, extensibility and openness. Furthermore, the core points of the overall design and system solutions deployed for engineering verification are presented. The effectivity and validity of the architecture are proved, paving the way for the next generation fighter electronic system.

参考文献

[1] 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6):524377. YANG W. Discussion on the development of future aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):524377(in Chinese).
[2] 周波, 戴幻尧, 乔会东, 等. 基于"OODA环"理论的认知电子战与赛博战探析[J]. 中国电子科学研究院学报, 2014(6):556-562. ZHOU B, DAI H Y, QIAO H D, et al. Research on recognition EW and cyberspace operation based on "OODA loop" theory[J]. Journal of China Academy of Electronics and Information Technology, 2014(6):556-562(in Chinese).
[3] 陈良文. 从"宝石柱"到"宝石台"——一体化航空电子系统发展概述[J]. 通信电子战, 2006(2):2-8. CHEN L W. From "Pave Pillar" to "Pave Pace"- the developmental summary of integrated avionics system[J]. Communication Electronic Warfare, 2006(2):2-8(in Chinese).
[4] 钱锟. F-35电子战系统的现状与未来[J]. 军事装备, 2009(10):38-44. QIAN K. The current and future situation of F-35 electronic warfare system[J]. Military Equipment, 2009(10):38-44(in Chinese).
[5] 蒲小勃. 航空电子系统未来之星——射频传感器系统[J]. 国际航空, 1998(5):34-35. PU X B. Integrated RF sensor system[J]. International Aviation, 1998(5):34-35(in Chinese)
[6] 赵佩红. 多功能综合射频系统技术综述[J]. 雷达与对抗, 2011(9):9-13. ZHAO P H. The technologies of multifunction integrated RF system[J]. Radar & ECM, 2011(9):9-13(in Chinese).
[7] 王国庆, 谷青范, 王淼, 等. 新一代综合化航空电子系统架构技术研究[J]. 航空学报, 2014, 35(6):1473-1486. WANG G Q, GU Q F, WANG M, et al. Research on the architecture technology for new generation integrated avionics system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1473-1486(in Chinese).
[8] 褚文奎, 张凤鸣, 樊晓光. 综合模块化航空电子系统软件体系结构综述[J]. 航空学报, 2008, 30(10):1912-1917. CHU W K, ZHANG F M, FAN X G. Overview on software architecture of integrated modular avionic systems[J]. Acta Aeronautica et Astronautica Sinica, 2008, 30(10):1912-1917(in Chinese).
[9] 许文平, 谷青范. 综合化航空电子系统资源融合机制研究[J]. 航空电子技术, 2012, 43(4):47-52. XU W P, GU Q F. Study on resource fusion for integrated modular avionics system[J]. Avionics Technology, 2012, 43(4):47-52(in Chinese).
[10] 胡来招. 雷达侦察接收机设计[M]. 北京:国防工业出版社, 2000. HU L Z. Radar reconnaissance receiver design[M]. Beijing:National Defense Industry Press, 2000(in Chinese).
[11] 胡来招. 瞬时测频[M]. 北京:国防工业出版社, 2002. HU L Z. Instantaneous frequency measurement[M]. Beijing:National Defense Industry Press, 2002(in Chinese).
[12] 国际系统工程协会. 系统工程手册:系统生命周期流程和活动指南[M].张新国,译. 北京:机械工业出版社, 2017. INCOSE. Systems engineering handbook:A guide for system life cycle processes and activities[M]. ZHANG X G, translated. Beijing:China Machine Press, 2017(in Chinese).
[13] 詹武, 董亚卓, 郭颖辉. 基于DODAF的多视角能力概念定义与度量描述方法[J]. 指挥信息系统与技术, 2017, 8(5):15-19. ZHAN W, DONG Y Z, GUO Y H. Description methods for multi-view capability concept definitions and measurements based on DODAF[J]. Command Information System and Technology, 2017, 8(5):15-19(in Chinese).
[14] 张春磊, 杨小牛. 认知电子战与认知电子战系统研究[J]. 中国电子科学研究院学报, 2014,9(6):551-555. ZHANG C L, YANG X N. Research on the cognitive electronic warfare and cognitive electronic warfare system[J]. Journal of China Academy of Electronics and Information Technology, 2014,9(6):551-555(in Chinese).
[15] JAMES T. Special design topics in digital wideband receivers[M]. London:Artech House, 2010.
[16] 贾朝文, 周祎. 宽带数字信道化接收机在FPGA中的实现[J]. 电子信息对抗技术, 2009, 24(2):67-71. JIA C W, ZHOU Y. Realization of wide band channelization receiver in FPGA[J]. Electronic Information Warfare Technology, 2009, 24(2):67-71(in Chinese).
[17] 贾朝文, 张学帅, 李延飞. 高概率宽带相位干涉仪测向解模糊算法[J]. 电子信息对抗技术, 2015, 30(4):58-62. JIA C W, ZHANG X S, LI Y F. High-probability solving ambiguity algorithm for wide-band phase interferometer[J]. Electronic Information Warfare Technology, 2015, 30(4):58-62(in Chinese).
[18] 刘亚, 薛磊, 刘小秋.一种新的LPI信号的测向方法[J]. 电子信息对抗技术, 2006, 21(6):47-52. LIU Y, XUE L, LIU X Q. A novel direction finding of LPI signals[J]. Electronic Information Warfare Technology, 2006, 21(6):47-52(in Chinese).
[19] 娄海燕, 孟海锋, 宋宏伟, 等. 基于神经网络的雷达辐射源识别方法探讨[J]. 兵器实验, 2008(4):26-30. LOU H Y, MENG H F, SONG H W, et al. A radar emitter identification method based on neural network[J]. Ordnance Test, 2008(4):26-30(in Chinese).
[20] ROE A L. Artificial neural networks for ESM emitter identification-an initial study[C]//Proceedings of IEEE Colloquium on Neural Networks for Systems:Principles and Applications. Piscataway:IEEE Press, 1991:1-3.
[21] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017(6):1229-1251. ZHOU F Y, JIN L P, DONG J. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017(6):1229-1251(in Chinese).
[22] 伊恩·古德费洛, 约书亚·本吉奥,亚伦·库维尔. 深度学习[M]. 北京:人民邮电出版社, 2017. GOODFELLOW L, BENGIO Y, AARON COURVILLE A. Deep lerning[M]. Beijing:Posts & Telecom Press, 2017(in Chinese).
[23] 洪沛, 蔡潇, 王羽. 基于FACE思想的软件通用运行环境设计[J]. 航空电子技术, 2016, 47(4):34-39. HONG P, CAI X, WANG Y. Design of the software common operating environment based on FACE strategies[J]. Avionics Technology, 2016, 47(4):34-39(in Chinese).
[24] 邓豹. RapidIO交换互连与配置管理研究[J]. 航空计算技术, 2014, 44(2):124-127. DENG B. Research on RapidIO switched interconnect and configuration management[J]. Aeronautical Computing Technique, 2014, 44(2):124-127(in Chinese).
[25] 童创明, 梁建刚, 鞠智芹, 等. 电磁场微波技术与天线[M]. 西安:西北工业大学出版社, 2009. TONG C M, LIANG J G, JU Z Q, et al. Electromagnetic microwave and antenna[M]. Xi'an:Northwestern Polytechnical University Press, 2009(in Chinese).
[26] 王运盛, 陈颖. ASAAC航空电子体系结构标准分析[J]. 电讯技术, 2007, 47(5):159-162. WANG Y S, CHEN Y. Analysis of ASAAC avionics standards[J]. Telecommunication Engineering, 2007, 47(5):159-162(in Chinese).
[27] 王悦, 王言伟, 邹岩. 从未来空战浅谈机载电子战系统发展[J]. 电子对抗, 2019, 189(6):16-20. WANG Y, WANG Y W, ZOU Y. Discussion on the development of airborne EW system in the future aircraft combat[J]. Electronic Warfare, 2019, 189(6):16-20(in Chinese).
[28] 吴明曦. 智能化战争——AI军事畅想[M]. 北京:国防工业出版社, 2020. WU M X. Intelligent warfares[M]. Beijing:National Defense Industry Press, 2020(in Chinese).
[29] 李浩, 范翔宇, 金宏斌, 等. 基于群体智能的无人集群作战任务规划研究[M]. 北京:国防工业出版社, 2019. LI H, FAN X Y, JIN H B, et al. Research of unmanned aerial vehicle swarms' mission program based on swarm intelligence[M]. Beijing:National Defense Industry Press, 2019(in Chinese).
[30] 席政. 人工智能在航天飞行任务规划中的应用研究[J]. 航空学报, 2007, 28(4):791-795. XI Z. Study on mission planning of spaceflight applying artificial intelligence[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4):791-795(in Chinese).
[31] 陈志新, 王秀芝, 王瑞. 智能隐身蒙皮研究进展及关键技术分析[J]. 战术导弹技术, 2017,6(5):6-10. CHEN Z X, WANG X Z, WANG R. Research on development and key technology of smart stealth skin[J]. Tactical Missile Technology, 2017, 6(5):6-10(in Chinese).
文章导航

/