电力消振作动器通过双电机系统并行独立控制各自偏心轮的旋转运动,以实现直升机的主动减振功能,但由于其存在齿轮间隙非线性强和偏心轮负载周期波动大等问题,降低了电力作动器的减振效果,甚至无法实现减振功能。针对传统双电机并行独立控制系统的问题,本文提出了基于多输入多输出的负载位置差交叉耦合控制策略,采用双电机负载位置均值环和位置差环相结合的方式,降低齿轮非线性和偏心负载对位置同步控制的影响。同时利用回差阵最小奇异值法对并行独立控制和交叉耦合控制策略下的系统进行稳定裕度对比分析,为设计位置均值环和位置差环控制器提供理论依据。最后搭建了电力消振作动器实验平台,完成了并行独立控制和交叉耦合控制下的系统输出力性能验证实验,验证了交叉耦合控制的有效性和先进性。
The electric vibration absorption actuator controls the rotational motion of the respective eccentric wheels in parallel through a dual-motors system to achieve the active vibration reduction function of a helicopter. However, due to the problems of high nonlinearity of gear backlash, large fluctuation of cycle load of the eccentric wheels and the like, the vibration reduction effect of the electric actuator is reduced, and the vibration reduction function cannot even be achieved. For the problems of the traditional dual-motors parallel independent control system, this paper proposes a load position difference cross-coupled strategy based on multi-input and multi-output, which adopts a dual-motors load position mean value loop and position difference loop combined mode, thus reducing the influence on position synchronous control by backlash nonlinearity and eccentric load. Meanwhile, the minimum singular value of the system return difference matrix is used to analyze the stability margin under parallel independent control strategy and cross-coupled control strategy so as to provide theoretical basis for designing position mean loop and position difference loop controllers. Finally, an electric vibration absorption actuator experimental platform is built, and the experiment of verifying the output force property under the two different strategies is completed, which verifies the effectiveness and the advancement of the cross-couped control.
[1] 王金岩, 宋燕燕, 沈春林. 现代直升机座舱系统及其展望[J]. 航空制造技术, 2006, 000(009): 38-40.
WANG J Y, SONG Y Y, SHEN C L. Modern Heli-copter Cockpit System and Its Prospects[J]. Aeronau-tical Manufacturing Technology, 2006, 000(009): 38-40. (in Chinese).
[2] Friedmann, Peretz P. Rotary-wing Aeroelasticity-current Status and Future Trends[J]. AIAA Journal, 2004, 42(10): 1953-1972.
[3] Lowson M V. Progress Towards Quieter Civil Heli-copters[J]. The Aeronautical Journal, 1992, 96(956): 209-223.
[4] Ganguli R. Optimum design of a helicopter rotor foe low vibration using aeroelastic analysis and response surface methods[J]. Journal of Sound and Vibration, 2002,258(2): 327-344.
[5] Gardonios P, Elliott S J. Passive and active isolation of structural vibration trans mission between two plates connected by a set of mounts[J]. Journal of Sound and Vibartion, 2000, 237(3): 483-511.
[6] 柳文林, 穆志韬, 段成美. 直升机振动与减振特性分析[J]. 海军航空工程航空学院学报, 2004, 19(5): 533-536.
LIU W L, MU Z T, DUAN C M. Research on vbration and vibration reduction characteristic of helicopter[J]. Journal of Naval Aeronautical Engineering Institute, 2004, 19(5): 533-536 (in Chinese).
[7] CHENG Q Y, DENG J H, HUANG J P, et al. Optimi-zation selection approach for distribution of actuators in active vibration control of helicopter[C].2015 34th Chinese Control Conference (CCC), Hangzhou, 2015: 3248-3251.
[8] Do-Hyung Kim,Tae-Joo Kim,Seung-Kil Paeketal. Application and Performance Evaluation of Helicopter Active Vibration Control System for Surion[J]. The Korean Society for Aeronautical and Space Sciences, 2015, 43(6): 557-567.
[9] Kenneth D Garnjost, Gonzalo J. Rey. Modular Vibrato-ry Force Generator and Method of Operating Same: United States, 5903077[P]. 1999-05-11.
[10] 王毅波, 曹宽. 多电机同步控制技术发展简介[J]. 微特电机, 2019, 47(08): 69-73.
WANG Y B, CAO K. Brief Introduction of Multi-Motor Synchronous Control Technology[J].Small & Special Electrical Machines, 2019, 47(08): 69-73 (in Chinese).
[11] Koren Y. Cross-coupled biaxial computer control for manufacturing systems[J]. Journal of Dynamic Sys-tems, Measurement, and Control, 1980, 102(4): 265-272.
[12] Anderson R G,Meyer A J,Valenzuela M A,et al.Web machine coordinated motion control via elec-tronic line-shafting[J]. IEEE Transactions on Industry Applications, 2001, 37(1): 247-254.
[13] Panagiotis Vartholomeos, Kostas Vlachos, Evangelos Papadopoulos. Analysis and Motion Control of Cen-trifugal Force Microrobotic Platform[J]. IEEE Transac-tions on Automation Science and Engineering, 2013, 10(3): 545-553.
[14] 马艳玲, 黄进, 张丹. 伺服系统中齿隙非线性的自适应补偿[J]. 系统仿真学报, 2009, 21(05): 1498-1501+1504.
MA Y L,HUANG J,ZHANG D. Adaptive Com-pensation of Backlash Nonlinearity for Servo Sys-tems[J]. Journal of System Simulation, 2009, 21(05): 1498-1501+1504 (in Chinese).
[15] Lagerberg A, Egardt B. Backlash estimation with appli-cation to automotive powertrains[J]. IEEE Transactions on Control Systems Technology, 2007,15(3): 483-493.
[16] Mukhopadhyay V, Newsom JR. Application of matrix singular value properties for evaluating gain and phase margins of multi-loop system[C]. AIAA Guidance Navigation and Control Conference,California, 1982: 420-428.
[17] WAMG Q G, YONG H, ZHEN Y, et al.On Loop Phase Margins of Multivariable Control Systems[J]. Journal of Process Control, 2008, 18(18): 202-211.
[18] 瞿福存,史忠科,戴冠中. MIMO系统稳定裕度的几个定义[J]. 飞行力学, 2002, 20(2): 6-9.
ZHAI F C, SHI Z K, DAI G Z. Several definitions of MIMO system stability margin[J]. Flight Dynamics, 2002, 20(2): 6-9 (in Chinese).
[19] 韩镇锚. 永磁同步电机直驱式位置伺服系统控制策略研究[D]. 南京航空航天大学, 2017: 11-20
HAN Z M. Research on Control Strategy of PMSM Direct Drive Position Servo System[D]. Nan-jing University of Aeronautics and Astronautics, 2017: 11-20 (in Chinese).
[20] ShI Z G, ZUO Z Y.Backstepping control for gear transmission servo systems with backlash nonlineari-ty[J]. IEEE Transactions on Automation Science and Engineering, 2015, 12( 2) : 752-757.
[21] Jang J O, Lee P G, Chung H T, et al. Output backlash compensation of systems using fuzzy logic[C]. Pro-ceedings of American Control Conference, Denver, 2003: 2489-2490.