论文

一种星球探测六足轮腿机器人的设计与运动规划

  • 秦日鹏 ,
  • 徐坤 ,
  • 陈佳伟 ,
  • 韩亮亮 ,
  • 丁希仑
展开
  • 1. 北京航空航天大学 机械工程及自动化学院, 北京 100083;
    2. 上海宇航系统工程研究所, 上海 210019

收稿日期: 2020-05-18

  修回日期: 2020-06-11

  网络出版日期: 2020-09-14

基金资助

国家自然科学基金(51775011,91748201);北京市自然科学基金(3192017);上海航天科技创新基金(SAST2019-014)

Design and motion planning of wheel-legged hexapod robot for planetary exploration

  • QIN Ripeng ,
  • XU Kun ,
  • CHEN Jiawei ,
  • HAN Liangliang ,
  • DING Xilun
Expand
  • 1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China;
    2. Shanghai Aerospace System Engineering Research Institute, Shanghai 210019, China

Received date: 2020-05-18

  Revised date: 2020-06-11

  Online published: 2020-09-14

Supported by

National Natural Science Foundation of China (51775011, 91748201); Beijing Municipal Natural Science Foundation (3192017); SAST (SAST2019-014)

摘要

针对星球探测,设计了一种具有高度对称性的六足轮腿机器人。为适应星球表面的复杂环境,该机器人具有不仅在机身水平面内中心对称而且关于机身水平面对称的结构,同时能够通过腿部构型的变化实现两种运动方式:轮行模式和足行模式。机器人的膝关节采用双平行四边形的传动机构,克服了现有足式机器人膝关节平行四边形机构传动的奇异问题,增加了膝关节的转动范围,实现了单腿关于机身水平面的对称运动。设计了一种基于指数坐标在SE (3)空间上规划的自适应步态,机器人可以利用该自适应步态在没有视觉传感器和局部地图的条件下,仅依靠足底力传感器和机身的惯性测量单元,实现自主连续稳定的行走。利用该机器人结构的高度对称性,提出了一种倾倒恢复策略以适应星球探测过程中的需求。以Adams和MATLAB为虚拟的仿真环境,对六足轮腿机器人的运动模式切换、自适应步态及倾倒恢复进行了仿真,验证了可行性。

本文引用格式

秦日鹏 , 徐坤 , 陈佳伟 , 韩亮亮 , 丁希仑 . 一种星球探测六足轮腿机器人的设计与运动规划[J]. 航空学报, 2021 , 42(1) : 524244 -524244 . DOI: 10.7527/S1000-6893.2020.24244

Abstract

A wheel-legged hexapod robot with high symmetries is designed for planetary exploration. With a structure both centrosymmetric in the body horizontal plane and symmetric about its body horizontal plane, this robot can realize two modes of locomotion: wheeled mode and legged mode. In the knee joint, a double parallelogram transmission mechanism is used to avoid the singularity of the traditional parallelogram mechanism, enlarging the motion range of the knee joint. Based on the motion planning in the exponential coordinate on SE(3), an adaptive gait is designed for this wheel-legged hexapod robot. Relying on the force sensor on the feet and inertial measurement unit on the body, this robot using this adaptive gait without the visual sensor and the global map can achieve a stable and continuous walk in an unknown environment. Based on the symmetry of the hexapod robot about the body horizontal plane, the motion planning of the recovery from overturning is designed to meet the need for planetary exploration. Simulations are conducted in the Adams and MATLAB environment. The switch of locomotion modes, the adaptive gait, and the stumble recovery of the wheel-legged hexapod robot are achieved in the simulation.

参考文献

[1] 路达, 刘金国, 高海波. 星球表面着陆巡视一体化探测机器人研究进展[J]. 航空学报, 2021, 42(1):523742. LU D, LIU J G, GAO H B. Progress research on integrated exploration robots for planet surface landing and moving[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1):523742(in Chinese).
[2] 丁希仑, 徐坤. 星球探测机器人[J]. 航空制造技术, 2013(18):34-39. DING X L, XU K. Robot for planetary exploration[J]. Aeronautical Manufacturing Technology, 2013(18):34-39(in Chinese).
[3] BROOKS R. A robot that walks:Emergent behaviors from a carefully evolved network[J]. Neural Computation, 1989, 1(2):253-262.
[4] FERRELL C L. Many sensors, one robot[C]//Proceedings of the IEEE/RSJ International Conference (IROS'93). Piscataway:IEEE Press, 1993:399-406.
[5] CYNTHIA F. Robust and adaptive locomotion of an autonomous hexapod[C]//Proceedings of From Perception to Action Conference. Piscataway:IEEE Press, 1994:66-77.
[6] MANKINS J C. Modular architecture options for lunar exploration and development[J]. Space Technology, 2002, 1(4):53-64.
[7] BRETT K, HRAND A, YANG C, et al. Lemur:Legged excursion mechanical utility rover[J]. Autonomous Robots, 2001, 11(3):201-205.
[8] JAMES P S, NATHAN J B, BRETT K. Maximizing walking step length for a near omni-directional hexapod robot[C]//The 2004 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Westgate Building:Citeseer, 2004:332-335.
[9] BARES J, HEBERT M. Ambler:An autonomous rover for planetary exploration[J]. IEEE Computer, 1998, 22(6):18-26.
[10] LIU J J, REN X, YAN W, et al. Descent trajectory reconstruction and landing site positioning of Chang'E-4 on the lunar farside[J]. Nature Communications, 2019, 10(1):1-10.
[11] RICHARD A, NED M, HALDUN K, et al. RHex:A biologically inspired hexapod runner[J]. Autonomous Robots, 2001, 11(3):207-213.
[12] KRIS H, TIMOTHY B, JEAN-CLAUDE L, et al. Motion planning for a six-legged lunar robot[M]//Algorithmic Foundation of Robotics VⅡ. Berlin:Springer, 2008:301-316.
[13] WANG Z, DING X, ROVETTA A, et al. Mobility analysis of the typical gait of a radial symmetrical six-legged robot[J]. Mechatronics, 2011, 21(7):1133-1146.
[14] 张志贤, 梁鲁, 果琳丽, 等. 轮腿式可移动载人月面着陆器概念设想[J]. 载人航天, 2016, 22(2):202-209. ZHANG Z X, LIANG L, GUO L L, et al. Conceptual design of manned lunar lander with wheel-legged mobile system[J]. Manned Spaceflight, 2016, 22(2):202-209(in Chinese).
[15] ANTOL J, CALHOUN P, FLICK J, et al. Low cost mars surface exploration:The mars tumbleweed:NASA/TM-2003-212411[R]. Washington, D.C.:NASA, 2003.
[16] CALHOUN P, HARRIS P, RAISZADEH B, et al. Conceptual design and dynamics testing and modeling of a mars tumbleweed rover[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005:247.
[17] SHAH M. Dynamic and aerodynamic modeling of the mars tumbleweed rover[D]. Raleigh:North Carolina State University, 2019:48-52.
[18] XU K, DING X. Typical gait analysis of a six-legged robot in the context of metamorphic mechanism theory[J]. Chinese Journal of Mechanical Engneering, 2013, 26(4):147-159.
[19] 岳富占, 崔平远, 崔祜涛. 月球车定位技术研究综述[J]. 深空探测研究, 2005, 3(2):17-22. YUE F Z, CUI P Y, CUI G T. Review of lunar rover positioning technology[J]. Deep Space Exploration, 2005, 3(2):17-22(in Chinese).
[20] SELIG J M. Geometrical methods in robotics[M]//Monographs in Computer Science. New York:Springer, 1996:9-60.
[21] PARK J. Interpolation and tracking of rigid body orientations[C]//IEEE International Conference on Control Automation and Systems. Piscataway:IEEE Press, 2010:668-673.
文章导航

/