电子电气工程与控制

基于分层置信规则库的惯导系统性能评估方法

  • 董昕昊 ,
  • 周志杰 ,
  • 胡昌华 ,
  • 冯志超 ,
  • 曹友
展开
  • 火箭军工程大学 导弹工程学院, 西安 710025

收稿日期: 2020-06-24

  修回日期: 2020-07-30

  网络出版日期: 2020-09-04

基金资助

国家自然科学基金(61370031,61773388,61374138,71601168)

Performance evaluation method for inertial system based on hierarchical belief rule base

  • DONG Xinhao ,
  • ZHOU Zhijie ,
  • HU Changhua ,
  • FENG Zhichao ,
  • CAO You
Expand
  • Missile Engineering College, Rocket Force University of Engineering, Xi'an 710025 China

Received date: 2020-06-24

  Revised date: 2020-07-30

  Online published: 2020-09-04

Supported by

National Natural Science Foundation of China (61370031,61773388,61374138,71601168)

摘要

为解决惯导系统(INS)性能评估所面临的高价值样本缺失、评估指标多、系统复杂等问题,提出一种基于分层置信规则库(Hierarchical BRB)的惯导系统性能评估方法。将专家知识与监测数据进行有效融合,提高了惯导系统的性能评估精度。首先,针对惯导系统结构构建分层BRB模型,同时将系统内部器件产生组合误差考虑在模型中。其次,为降低专家知识不确定性对初始模型评估精度的影响,采用基于投影算子的协方差矩阵自适应优化策略(P-CMA-ES)构建优化模型,通过监测数据对模型参数进行微调。最后,以某型捷联惯导系统的性能评估为例,验证了所提方法的有效性。

本文引用格式

董昕昊 , 周志杰 , 胡昌华 , 冯志超 , 曹友 . 基于分层置信规则库的惯导系统性能评估方法[J]. 航空学报, 2021 , 42(7) : 324456 -324456 . DOI: 10.7527/S1000-6893.2020.24456

Abstract

To solve the problems of high-value sample shortage, multiple evaluation indicators, and system complexity in the performance evaluation of the Inertial Navigation System (INS), we propose a performance evaluation method for the INS based on the hierarchical Belief Rule Base (BRB). By integrating the expert knowledge and the monitoring data, the performance evaluation accuracy of the INS is significantly improved. Firstly, a hierarchical BRB model is established for the INS structure, considering the combined errors generated by the internal components of the system. Then, to reduce the influence of expert knowledge uncertainty on the evaluation accuracy of the initial model, the Projection operator-based Covariance Matrix Adaptive optimization Strategy (P-CMA-ES) is employed to construct the optimization model, where the model parameters are fine-tuned using the monitoring data. Finally, a certain type of strapdown INS is taken as an example, verifying the effectiveness of the proposed method.

参考文献

[1] 牛小骥, 班亚龙, 张提升, 等. GNSS/INS深组合技术研究进展与展望[J]. 航空学报, 2016, 37(10):2895-2908. NIU X J, BAN Y L, ZHANG T S, et al. Research progress and prospects of GNSS/INS deep integration[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):2895-2908(in Chinese).
[2] 钱超, 张子剑, 李大伟. 平台式惯性导航系统在线可靠性评估技术[J]. 航空学报, 2017, 38(9):321259. QIAN C, ZHANG Z J, LI D W. On-line reliability assessment of platform inertial navigation system[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):321259(in Chinese).
[3] 戴庆天. 惯导组件故障诊断技术研究[D]. 天津:中国民航大学, 2015. DAI Q T. The research of INU fault diagnosis technique[D]. Tianjin:Civil Aviation University of China, 2015(in Chinese).
[4] 鲁峰, 黄金泉. 航空发动机部件性能参数融合预测[J]. 航空学报, 2009, 30(10):1795-1800. LU F, HUANG J Q. Engine component performance prognostics based on decision fusion[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1795-1800(in Chinese).
[5] 陈雷雨,周志杰,唐帅文,等.融合多元信息的武器装备性能评估方法[J].系统工程与电子技术, 2021, 42(7):1527-1533. CHEN L Y, ZHOU Z J, TANG S W, et al. Performance evaluation of weaponry equipment by fusing multiple information[J]. Journal of Systems Engineering and Electronics, 2021, 42(7):1527-1533(in Chinese).
[6] 赵新超, 吕卫民, 金国富. 基于性能退化与D-S证据理论的可靠性评估方法[J]. 兵工自动化, 2019, 38(4):53-56, 83. ZHAO X C, LYU W M, JIN G F. Reliability evaluation method based on performance degradation and D-S evidence theory[J]. Ordnance Industry Automation, 2019, 38(4):53-56, 83(in Chinese).
[7] 王欣宇, 朱嘉林, 缪旻. 基于阈值降噪与神经网络的陀螺仪误差补偿方法[J]. 北京信息科技大学学报(自然科学版), 2020, 35(1):58-62, 77. WANG X Y, ZHU J L, MIAO M. Gyroscope error compensation method based on threshold denoising and neural network[J]. Journal of Beijing Information Science & Technology University, 2020, 35(1):58-62, 77(in Chinese).
[8] 于恩宁. 激光捷联惯性测量组合故障诊断技术研究[D]. 哈尔滨:哈尔滨工业大学, 2018. YU E N. The research of fault diagnosis technology on laser gyro strapdown inertial measurement unit[D]. Harbin:Harbin Institute of Technology, 2018(in Chinese).
[9] 李永满. 某型激光陀螺捷联惯组测试系统设计[D]. 哈尔滨:哈尔滨工业大学, 2013. LI Y M. The test system design on the measurement unit of laser gyro strapdown inertial[D]. Harbin:Harbin Institute of Technology, 2013(in Chinese).
[10] YANG J B, LIU J, WANG J, et al. Belief rule-base inference methodology using the evidential reasoning Approach-RIMER[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2006, 36(2):266-285.
[11] YANG J B, LIU J, XU D L, et al. Optimization models for training belief-rule-based systems[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2007, 37(4):569-585.
[12] XU D L, LIU J, YANG J B, et al. Inference and learning methodology of belief-rule-based expert system for pipeline leak detection[J]. Expert Systems with Applications, 2007, 32(1):103-113.
[13] 胡昌华, 司小胜. 基于信度规则库的惯性平台健康状态参数在线估计[J]. 航空学报, 2010, 31(7):1454-1465. HU C H, SI X S. Real-time parameters estimation of inertial platform's health condition based on belief rule base[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1454-1465(in Chinese).
[14] ZHOU Z J, HU G Y, ZHANG B C, et al. A model for hidden behavior prediction of complex systems based on belief rule base and power set[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2018, 48(9):1649-1655.
[15] YIN X J, WANG Z L, ZHANG B C, et al. A double layer BRB model for health prognostics in complex electromechanical system[J]. IEEE Access, 2017, 5:23833-23847.
[16] YANG J B, WANG Y M, XU D L, et al. Belief rule-based methodology for mapping consumer preferences and setting product targets[J]. Expert Systems with Applications, 2012, 39(5):4749-4759.
[17] HE W, HU G Y, ZHOU Z J, et al. A new hierarchical belief-rule-based method for reliability evaluation of wireless sensor network[J]. Microelectronics Reliability, 2018, 87:33-51.
[18] CHEN Y W, YANG J B, XU D L, et al. Inference analysis and adaptive training for belief rule based systems[J]. Expert Systems With Applications, 2011, 38(10):12845-12860.
[19] YANG J B, XU D L. Evidential reasoning rule for evidence combination[J]. Artificial Intelligence, 2013, 205:1-29.
[20] HU G Y, ZHOU Z J, ZHANG B C, et al. A method for predicting the network security situation based on hidden BRB model and revised CMA-ES algorithm[J]. Applied Soft Computing, 2016, 48:404-418.
[21] 蔚国强, 杨建业, 张合新. 激光陀螺捷联惯组的无定向快速标定技术研究[J]. 中国惯性技术学报, 2011, 19(1):21-27. WEI G Q, YANG J Y, ZHANG H X. Rapid calibration of laser gyro strapdown IMUs without north-seeking[J]. Journal of Chinese Inertial Technology, 2011, 19(1):21-27(in Chinese).
文章导航

/