电子电气工程与控制

考虑驾驶仪动态性能的指令滤波反演制导律

  • 刘佳琪 ,
  • 王伟 ,
  • 林德福 ,
  • 林时尧
展开
  • 1. 北京理工大学 宇航学院, 北京 100081;
    2. 无人机自主控制技术北京重点实验室, 北京 100081

收稿日期: 2020-04-21

  修回日期: 2020-07-20

  网络出版日期: 2020-09-04

基金资助

国家自然科学基金(U1613225)

Command filtered backstepping guidance law considering autopilot dynamics

  • LIU Jiaqi ,
  • WANG Wei ,
  • LIN Defu ,
  • LIN Shiyao
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Beijing Key Laboratory of UAV Autonomous Control Technology, Beijing 100081, China

Received date: 2020-04-21

  Revised date: 2020-07-20

  Online published: 2020-09-04

Supported by

National Natural Science Foundation of China (U1613225)

摘要

针对攻击机动目标的制导问题,设计了一种考虑自动驾驶仪性能、输入项约束的指令滤波反演制导律。首先,基于三维空间内弹目相对运动模型,采用反演递推方式设计制导律。针对传统反演控制存在的"微分膨胀"问题,引入指令滤波器对虚拟量进行过滤计算。考虑硬件计算能力的约束,引入自动驾驶仪二阶动力学模型减少控制过程延迟,并利用饱和函数和低通滤波器对输入项进行约束。此外,针对机动目标设计了一种扩张状态观测器来获取其加速度。通过Lyapunov理论证明了所设计闭环制导系统的稳定性。通过仿真实验验证了该制导律相有效性及优越性。

本文引用格式

刘佳琪 , 王伟 , 林德福 , 林时尧 . 考虑驾驶仪动态性能的指令滤波反演制导律[J]. 航空学报, 2020 , 41(12) : 324123 -324123 . DOI: 10.7527/S1000-6893.2020.24123

Abstract

A command filtered backstepping guidance law considering autopilot dynamic characteristics and input constraints is designed for the guidance problem in attacking maneuvering targets. First, based on the relative motion model of missiles and targets in three-dimensional space, the guidance law is designed by back-stepping method. A command filter is introduced to filter the virtual quantity to solve the problem of "differential expansion" in the traditional back-stepping control. Considering the constraints of hardware computing power, we adopt the second order dynamics model of the autopilot to reduce the delay of actual control process, with the input constrained by the saturation function and the low pass filter. We further design an extended state observer to estimate the acceleration of maneuvering targets. Based on the Lyapunov stability theory, the stability of the designed closed loop guidance system is tested. The effectiveness and superiority of the guidance law are verified by simulation.

参考文献

[1] YAN H, WANG X, YU B, et al. Adaptive integrated guidance and control based on backstepping and input-to-state stability[J].Asian Journal of Control, 2014, 16(2):602-608.
[2] HE S M, WANG W, LIN D F. Adaptive backstepping impact angle guidance law accounting for autopilot Lag[J].Journal of Aerospace Engineering, 2017, 30(3):04016094.
[3] MAN C Y, ZHANG Z X, LI S H. Two composite guidance laws based on the backstepping control and disturbance observers with autopilot lag[J]. Transa-ctions of the Institute of Measurement and Control,2019,41(10):2957-2969.
[4] 司玉洁, 熊华, 宋勋, 等. 三维自适应终端滑模协同制导律[J].航空学报,2020,41(51):723759 SI Y J, XIONG H, SONG X, et al. Three dimensional adaptive terminal sliding mode cooperative guidance law[J].Acta Aeronautica et Astronautica Sinica,2020,41(51):723759(in Chinese).
[5] LYU T, LI C H, GUO Y N, et al. Three-dimensional finite-time cooperative guidance for multiple missiles without radial velocity measurements[J]. Chinese Journal of Aeronautics,2019,32(5):1294-1304.
[6] SI Y J, SONG S M. Three-dimensional adaptive finite-time guidance law for intercepting maneuvering targets[J]. Chinese Journal of Aeronautics,2017,30(6):1985-2003.
[7] 严晗, 季海波. 弹道坐标中三维鲁棒非线性导引律[J]. 控制理论与应用,2013,30(9):1079-1085. YAN H, JI H B, Three-dimensional robust nonlinear guidance law in trajectory coordinates[J]. Control Theory & Applications, 2013,30(9):1079-1085(in Chinese).
[8] SONG B, HEDRICK J K. Simultaneous quadratic stabilization for a class of non-linear systems with input saturation using dynamic surface control[J]. International Journal of Control, 2004,77(1):19-26.
[9] ZHOU D, XU B. Adaptive dynamic surface guidance law with input saturation constraint and autopilot dynamics[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(5):1152-1159.
[10] RASHAD R, ABOUDONIA A, EL-BADAWY A. A novel disturbance observer-based backstepping controller with command filtered compensation for a MIMO system[J]. Journal of the Franklin institute,2016,353(16):4039-4061.
[11] DONG W J, FARRELL J A, POLYCARPOU M M, et al. Command filtered adaptive backstepping[J]. IEEE Transactions on Control Systems Technology, 2012, 20(3):566-80.
[12] WANG L, ZHANG W H, WANG D H, et al. Command filtered back-stepping missile integrated guidance and autopilot based on extended state observer[J]. Advances in Mechanical Engineering,2017,9(11):1-13.
[13] 董朝阳,路遥,王青.高超声速飞行器指令滤波反演控制[J].宇航学报,2016,37(8):957-963. DONG C Y, LU Y, WANG Q. Command filtered backstepping control for hypersonic vehicle[J].Journal of Astronautics, 2016,37(8):957-963(in Chinese).
[14] 毛柏源, 李君龙, 张锐. 考虑自动驾驶仪动态特性的多约束中制导律[J]. 系统工程与电子技术, 2019,41(2):382-388. MAO B Y, LI J L, ZHANG R. Midcourse guidance law with multiple constraints considering missile's dynamics of autopilot[J]. Journal of Systems Engineering and Electronics, 2019,41(2):382-388(in Chinese).
[15] 张宽桥,杨锁昌,李宝晨,等.考虑驾驶仪动态特性的固定时间收敛制导律[J].航空学报, 2019,40(11):323227. ZHANG K Q, YANG S C, LI B C, et al. Fixed-time convergent guidance law considering autopilot d-ynamics[J].Acta Aeronautica et Astronautica Sinica, 2019,40(11):323227(in Chinese).
[16] 赵国荣,李晓宝,刘帅,等.考虑自动驾驶仪延迟的多约束末制导律[J].兵器装备工程学报,2019,40(10):1-6. ZHAO G R, LI X B, LIU S, et al. Guidance law with drop angle and field-of-view angle constraints considering autopilot lag[J].Journal of Ordnance Equipment Engineering, 2019,40(10):1-6(in Chinese).
[17] CHWA D. Global tracking control of underactuated ships with input and velocity constraints using dynamic surface control method[J]. IEEE Transactions on Control systems technology, 2011, 19(6):1357-1370.
[18] 骆长鑫,张东洋,雷虎民,等.输入受限的高超声速飞行器鲁棒反演控制[J].航空学报,2018,39(4):321801. LUO C X, ZHANG D Y, LEI H M, et al. Robust backstepping control of input-constrained hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018,39(4):321801(in Chinese).
[19] 王松艳,孙向宇,杨胜江,等.考虑输入饱和的制导控制一体化设计[J].航空学报,2017,38(10):320897. WANG S Y, SUN X Y, YANG S J, et al. Integrat-ed guidance and control design considering input saturation[J].Acta Aeronautica et Astronautica Sinica, 2017,38(10):320897(in Chinese).
[20] 孟克子,周荻.过载指令约束下的导弹导引律设计[J].兵工学报,2014,35(9):1419-1427. MENG K Z, ZHOU D. Design of missile guidance law subject to acceleration command constraint[J]. Acta Armamentarii, 2014,35(9):1419-1427(in Chinese).
[21] DU R L, MENG K Z, ZHOU D, et al. Design of three-dimensional nonlinear guidance law with bounded acceleration command[J]. Aerospace Science and Technology,2015,46:168-175.
[22] DUAN M J, ZHOU D, CHENG D L. Extended state observer-based finite-time guidance laws on account of thruster dynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering,2019,233(12):4583-4597.
[23] 陈泽宏,钟继鸿,赵宏宇,等.基于扩张状态观测器的有限时间收敛制导律[J].空天防御, 2019,2(3):25-30. CHEN Z H, ZHONG J H, ZHAO H Y, et al. Fini-te time convergent guidance law based on exten-ded state observer[J]. Air & Space Defense, 2019,2(3):25-30(in Chinese).
[24] 张文杰,鲁天宇,夏群利.基于扩张状态观测器的反预警滑模制导律[J].系统工程与电子技术,2019,41(5):1087-1093. ZHANG W J, LU T Y, XIA Q L. Anti-early-warning airplane sliding mode guidance law based on extended state observer[J]. Journal of Systems Engineering and Electronics, 2019,41(5):1087-1093(in Chinese).
[25] ZHOU D, SUN S, TEO K L. Guidance laws with finite time convergence[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(6):1838-1846.
[26] 韩京清.自抗扰控制技术-估计补偿不确定因素的控制技术[M].北京:国防工业出版社,2008:221-237 HAN J Q. Active disturbance rejection control technique:the technique for estimating and compensating the uncertainties[M]. Beijing:National Defence Industry Press,2008:221-237.
文章导航

/