流体力学与飞行力学

变循环发动机过渡态性能直接模拟方法

  • 贾琳渊 ,
  • 陈玉春 ,
  • 程荣辉 ,
  • 宋可染 ,
  • 谭甜
展开
  • 1. 西北工业大学 动力与能源学院, 西安 710072;
    2. 中国航发沈阳发动机研究所, 沈阳 110015

收稿日期: 2020-02-26

  修回日期: 2020-06-16

  网络出版日期: 2020-08-07

基金资助

航空动力基金(6141B09050382)

Direct simulation method of transient-state performance of variable cycle engines

  • JIA Linyuan ,
  • CHEN Yuchun ,
  • CHENG Ronghui ,
  • SONG Keran ,
  • TAN Tian
Expand
  • 1. School of power and energy, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Aero-engine corporation of China, Shenyang Engine Research Institute, Shenyang 110015, China

Received date: 2020-02-26

  Revised date: 2020-06-16

  Online published: 2020-08-07

Supported by

Aviation Power Foundation(6141B09050382)

摘要

为了实现多变量可调的变循环发动机(VCE)过渡态性能模拟和控制规律设计,在稳态逆算法和过渡态性能隐式格式计算方法的基础上开发了变循环发动机过渡态直接模拟方法。在稳态逆算法模型中加入容积效应和转子动力学方程,实现了同时给定加速率、涡轮前温度和压缩部件工作点的条件下直接模拟计算过渡态过程中变几何参数和燃油流量的调节规律,验证了方法的精度和可行性,并将该方法用于变循环发动机转模态性能模拟和控制规律设计。计算结果表明,过渡态直接模拟方法的误差在0.58%以内,超声速巡航状态下由单外涵模态转换到双外涵模态的时间约为1 s,海平面静止状态下双外涵转单外涵的时间约为3 s,且推力、转速、涡轮前温度、喘振裕度等参数过渡平稳。该方法可简化转模态控制规律设计流程,并提高设计精度。

本文引用格式

贾琳渊 , 陈玉春 , 程荣辉 , 宋可染 , 谭甜 . 变循环发动机过渡态性能直接模拟方法[J]. 航空学报, 2020 , 41(12) : 123901 -123901 . DOI: 10.7527/S1000-6893.2020.23901

Abstract

To simulate the transient-state performance and design the control schedule of variable cycle engines (VCEs), we develop the VCE transient-state direct simulation method based on the steady-state reverse method and the transient-state implicit simulation model. Models of the volume effect and the rotor dynamics are added to the steady-state reverse method, making it possible to directly calculate the control schedule of the variable geometry parameters and the fuel mass flow with the given accelerating rate, turbine inlet total temperature and the operating points of compressors. The method is validated in terms of feasibility and accuracy and is then used to design the control schedule and simulate the performance of a VCE mode-transition process. Results show that the deviations of the transition-state direct simulation method are within 0.58%. The mode-transition time from the single-bypass mode to the double-bypass mode under the supersonic cruise condition is around 1 s, while that from double-bypass to single-bypass in the sea level steady state is 3 s. During the mode-transition, the parameters such as thrust, rotational speeds, turbine inlet total temperature and surge margins vary smoothly. The direct simulation method can simplify the design process and improve the design accuracy of the VCE mode-transition control schedule.

参考文献

[1] PRZYBYLKO S, ROCK S. Evaluation of a multivariable control design on a variable cycle engine simulation:AIAA-82-1077[R]. Reston:AIAA, 1982.
[2] 唐海龙. 面向对象的航空发动机性能模拟系统及其应用[D]. 北京:北京航空航天大学, 2000. TANG H L. Object-Oriented aeroengine performance simulation system and its application[D]. Beijing:Beihang University, 2000(in Chinese).
[3] 刘增文,王占学,蔡元虎. 变循环发动机模态转换数值模拟[J]. 航空动力学报, 2011, 26(9):2128-2132. LIU Z W, WANG Z X, CAI Y H. Numerical simulation on bypass transition of variable cycle engine[J]. Journal of Aerospace Power, 2011, 26(9):2128-2132(in Chinese).
[4] 苟学中. 变循环发动机建模及控制规律研究[D]. 南京:南京航空航天大学,2011. GOU X Z. Research on modeling and control laws for variable cycle engine[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011(in Chinese).
[5] 周红,王占学,张晓博,等. 变循环发动机模态转换的几何调节规律[J]. 航空动力学报, 2015, 30(9):2160-2166. ZHOU H, WANG Z X, ZHANG X B, et al. Geometry regulating law of variable cycle engine during mode transition[J]. Journal of Aerospace Power, 2015, 30(9):2160-2166(in Chinese).
[6] 周红. 变循环发动机及其与飞机一体化设计研究[D]. 西安:西北工业大学, 2016. ZHOU H. Investigation on the variable cycle engine characteristics and integration design with aircraft[D]. Xi'an:Northwestern Polytechnical University, 2016(in Chinese).
[7] 周红,王占学,刘增文,等. 双外涵变循环发动机可变几何特性研究[J]. 航空学报, 2014, 35(8):2126-2135. ZHOU H, WANG Z X, LIU Z W, et al. Variable geometry characteristics research of double bypass variable cycle engine[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2126-2135(in Chinese).
[8] ZHENG J, CHEN M, TANG H. Matching mechanism analysis on an adaptive cycle engine[J]. Chinese Journal of Aeronautics, 2017, 30(2):706-718.
[9] 刘佳鑫,王志强,严伟,等. 单/双涵道模式转换动态过程的数值研究[J]. 推进技术, 2017, 38(8):1699-1708. LIU J X, WANG Z Q, YAN W, et al. Numerical simulation of transition between single and double bypass mode[J]. Journal of Propulsion Technology, 2017, 38(8):1699-1708(in Chinese).
[10] 张晓博,王占学,周红. FLADE变循环发动机模态转换过程特性分析[J]. 推进技术, 2018, 39(1):14-22. ZHANG X B, WANG Z X, ZHOU H. Analysis on characteristics of mode transition performance of variable cycle engine with FLADE[J]. Journal of Propulsion Technology, 2018, 39(1):14-22(in Chinese).
[11] 薛益春. 变循环发动机多变量控制及性能寻优[D]. 南京:南京航空航天大学, 2012. XUE Y C. Multivariable control and performance optimization of variable cycle engine[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
[12] 徐佩佩. 变循环发动机多变量控制及性能寻优[D]. 南京:南京航空航天大学, 2016. XU P P. Multivariable control and performance optimization of variable cycle engine[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).
[13] ULIZAR I, PILIDIS P. Transition control and performance of the selective bleed variable cycle turbofan:95-GT-286[R]. New York:ASME, 1995.
[14] 谢振伟, 郭迎清, 姜彩虹, 等.变循环发动机完全分布式控制[J].航空学报,2016,37(6):1809-1818. XIE Z W, GUO Y Q, JIANG C H, et al. Fully distributed control of variable cycle engine[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1809-1818. (in Chinese).
[15] CORBETT M, WOLFF M. Modeling transient effects of a double bypass engine:AIAA-2010-7090[R]. Reston:AIAA, 2010.
[16] CONNOLLY J W, KOPASAKIS G, CARLSON J, et al. Nonlinear dynamic modeling of a supersonic commercial transport turbo-machinery propulsion system for aero-propulso-servo-elasticity research:AIAA-2015-4031[R]. Reston:AIAA, 2015.
[17] 贾琳渊,陈玉春,谭甜,等. 变几何参数对变循环发动机过渡态性能的影响分析[J]. 推进技术, 2020, 41(8):1681-1691. JIA L Y, CHEN Y C, TAN T, et al. Analysis for influence of variable geometry parameters on transition state performance of variable cycle engine[J]. Journal of Propulsion Technology, 2020, 41(8):1681-1691(in Chinese).
[18] 贾琳渊. 变循环发动机控制规律设计方法研究[D]. 西安:西北工业大学, 2017. JIA L Y. Variable cycle engine control law design[D]. Xi'an:Northwestern Polytechnical University, 2017(in Chinese).
[19] 宋可染,陈玉春,贾琳渊,等. 涡扇发动机加减速特性显式与隐式计算方法[J]. 推进技术, 2021, 42(1).(待发表) SONG K R, CHEN Y C, JIA L Y, et al. Explicit and implicit method to calculate acceleration and deceleration performance of turbofan engines[J]. Journal of Propulsion Technology, 2021, 42(1) (to be published) (in Chinese).
[20] JIA L, CHEN Y, REN C, et al. Steady state control schedule optimization for a variable cycle engine:ICMAE-2018-C129[R]. Budapest:ICMAE, 2018.
[21] 陈玉春,贾琳渊,任成,等. 变循环发动机稳态控制规律设计的新方法[J]. 推进技术, 2017, 38(10):2262-2270. CHEN Y C, JIA L Y, REN C, et al. An innovative method for design of steady state control law for variable cycle engines[J]. Journal of Propulsion Technology, 2017, 38(10):2262-2270(in Chinese).
[22] SULLIVAN T, PARKER D E. Design study and performance analysis of a high speed multistage variable geometry fan for a variable cycle engine:NASA CR-159545[R].Washington,D.C.:NASA Lewis Research Center, 1979.
文章导航

/