论文

基于干扰观测器的柔性空间机器人在轨精细操作控制方法

  • 刘璟龙 ,
  • 张崇峰 ,
  • 邹怀武 ,
  • 李宁 ,
  • 吴琳娜
展开
  • 1. 上海宇航系统工程研究所, 上海 201109;
    2. 上海市空间飞行器机构重点实验室, 上海 201109;
    3. 上海航天技术研究院, 上海 201109

收稿日期: 2020-02-27

  修回日期: 2020-03-16

  网络出版日期: 2020-07-27

On-orbit precise operation control method for flexible joint space robots based on disturbance observer

  • LIU Jinglong ,
  • ZHANG Chongfeng ,
  • ZOU Huaiwu ,
  • LI Ning ,
  • WU Linna
Expand
  • 1. Shanghai Institute of Aerospace System Engineering, Shanghai 201109, China;
    2. Shanghai Key Laboratory of Spacecraft Mechanism, Shanghai 201109, China;
    3. Shanghai Aerospace Science and Technology Institute, Shanghai 201109, China

Received date: 2020-02-27

  Revised date: 2020-03-16

  Online published: 2020-07-27

摘要

由于强非线性、强耦合和强时变等特征,柔性空间机器人的稳定精细控制问题一直是一个重大挑战。轻质小型化机器人受空间及重量限制,其关节柔性通常不可忽略,这部分柔性主要是由谐波减速器和力矩传感器的柔性造成的。传统的运动学控制在空载时能保持稳定,但是对大负载、快速运动时的适应性差,严重时机械臂抖动剧烈甚至发散。针对以上特征,提出了一种基于非线性干扰观测器和动力学极点配置的柔性空间机器人在轨精细操作控制方法。仿真实验证明,该方法可以有效地抑制柔性激振,保证响应的快速性和准确性,同时有较好的鲁棒性,能够适应不同类型扰动的影响和末端环境柔顺控制的要求,对工程应用具有一定的参考意义。

本文引用格式

刘璟龙 , 张崇峰 , 邹怀武 , 李宁 , 吴琳娜 . 基于干扰观测器的柔性空间机器人在轨精细操作控制方法[J]. 航空学报, 2021 , 42(1) : 523899 -523899 . DOI: 10.7527/S1000-6893.2020.23899

Abstract

Due to characteristics such as strong nonlinearity, strong coupling and strong time-variation, the subtle stability control of flexible space robots has always been a major challenge. Limited by space and weight, the joint flexibility of lightweight miniaturized robots cannot be ignored, which is mainly caused by the flexibility of the harmonic reducer and the torque sensor. Traditional kinematics control can keep it stable in no-load states, while has poor adaptability to large loads and fast movement. In serious situations, the manipulator shakes violently, or even diverges. In view of the above problems, this paper proposes a precise operation control method for on-orbit flexible joint space robots based on a nonlinear disturbance observer and dynamics pole assignment. The simulation results show that this method can effectively suppress the flexible excitation, and ensure the rapidity and accuracy of the response; moreover, with good robustness, it can adapt to the influence of different types of disturbances and the requirements of terminal environment compliance control, providing reference for engineering application.

参考文献

[1] 翟光, 张景瑞, 周至成. 基于集群空间机器人的合作目标协同定位技术[J]. 北京理工大学学报, 2014, 34(10):1034-1039. ZHAI G, ZHANG J R, ZHOU Z C. Coordinated localization method for cooperative target based on clustered space robot system[J]. Transactions of Beijing Institute of Technology, 2014, 34(10):1034-1039(in Chinese).
[2] BONING P, ONO M, NOHARA T, et al. An experimental study of the control of space robot teams assembling large flexible space structures[C]//Proceedings of the 9th international Symposium on Artificial Intelligence, Robotics and Automation in Space, 2008.
[3] 曾祥鑫. 自由漂浮空间机器人路径规划及控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2018. ZENG X X. Research on path planning and control method for free-floating space robot[D]. Harbin:Harbin Institute of Technology, 2018(in Chinese).
[4] 张福海, 付宜利, 王树国. 惯性参数不确定的自由漂浮空间机器人自适应控制研究[J]. 航空学报, 2012, 33(12):2347-2354. ZHANG F H, FU Y L, WANG S G. Adaptive control of free-floating space robot with inertia parameter uncertainties[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2347-2354(in Chinese).
[5] 侯鹏飞. 面向航天器在轨维修任务的机械臂及其地面实验研究[D]. 哈尔滨:哈尔滨工业大学, 2015. HOU P F. Research on manipulator for on-orbit servicing tasks of spacecraft and its ground test[D]. Harbin:Harbin Institute of Technology, 2015(in Chinese).
[6] 刘冬雨, 刘宏, 李志奇. 空间机械臂手系统在轨精细维修操作的标定策略[J]. 宇航学报, 2017, 38(6):630-637. LIU D Y, LIU H, LI Z Q. Calibration strategy of space manipulator system on-orbit servicing fine operation[J]. Journal of Astronautics, 2017, 38(6):630-637(in Chinese).
[7] 陈启军, 王月娟, 陈辉堂. 基于PD控制的机器人轨迹跟踪性能研究与比较[J]. 控制与决策, 2003, 18(1):53-57. CHEN Q J, WANG Y J, CHEN H T. Comparative research of trajectory tracking performance of robotic manipulator based on PD control scheme[J]. Control and Decision, 2003, 18(1):53-57(in Chinese).
[8] 赵杰, 任思璟, 于宗艳. 基于重力补偿的机械臂PD控制系统研究[J]. 现代科学仪器, 2012(5):58-59. ZHAO J, REN S J, YU Z Y. Study of manipulator PD control system based on gravity compensation[J]. Modern Scientific Instruments, 2012(5):58-59(in Chinese).
[9] 洪昭斌, 陈力, 李文望. 柔性空间机械臂协调运动的鲁棒神经网络控制及柔性振动PD反馈控制[J]. 力学季刊, 2014, 35(1):98-104. HONG Z B, CHEN L, LI W W. The robust NN control of space flexible manipulator and the PD control for vibration suppression[J]. Chinese Quarterly of Mechanics, 2014, 35(1):98-104(in Chinese).
[10] ULRICH S, SASIADEK J Z, BARKANA I. Modeling and direct adaptive control of a flexible-joint manipulator[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(1):25-39.
[11] SUN J F, SHI S, WANG X H, et al. Controller design of large space manipulator flexible joint using differential geometry algorithm[J]. Journal of Harbin Engineering University, 2012, 33(11):1371-1376.
[12] KORAYEM M H, IRANI M, NEKOO S R. Load maximization of flexible joint mechanical manipulator using nonlinear optimal controller[J]. Acta Astronautica, 2011, 69(7-8):458-469.
[13] LIGHTCAP C A, BANKS S A. An extended Kalman filter for real-time estimation and control of a rigid-link flexible-joint manipulator[J]. IEEE Transactions on Control Systems Technology, 2009, 18(1):91-103.
[14] 张丹丹. 柔性关节机器人动力学建模及控制[D]. 南京:南京理工大学, 2017. ZHANG D D. Research on flexible joint robot dynamic model and control[D]. Nanjing:Nanjing University of Science and Technology, 2017(in Chinese).
[15] SPONG M W. Modeling and control of elastic joint robots[J]. Journal of Dynamic Systems Measurement & Control, 1987, 109(4):310-319.
[16] FARID M, LUKASIEWICZ S A. Dynamic modeling of spatial manipulators with flexible links and joints[J]. Computers & Structures, 2000, 75(4):419-437.
[17] KHALIL H K, GRIZZLE J W. Nonlinear systems[M]. Upper Saddle River:Prentice Hall, 2002.
[18] MOHAMMADI A, TAVAKOLI M, MARQUEZ H J, et al. Nonlinear disturbance observer design for robotic manipulators[J]. Control Engineering Practice, 2013, 21(3):253-267.
[19] 李军, 万文军, 王越超. 一种新型线性二阶滤波器的研究与应用[J]. 控制理论与应用, 2017, 34(3):312-320. LI J, WAN W J, WANG Y C. Research and application of a new type of linear second-order filter[J]. Control Theory and Applications, 2017, 34(3):312-320(in Chinese).
[20] 姚志英, 曹海青. 一种高稳快速跟踪微分器及其应用[J]. 北京理工大学学报, 2018,38(8):95-101. YAO Z Y, CAO H Q. A novel tracking differentiator with good stability and rapidity and its application[J]. Transactions of Beijing Institute of Technology, 2018,38(8):95-101(in Chinese).
[21] 董存会. 跟踪微分器和时变高增益观测器的应用[D]. 太原:山西大学, 2015. DONG C H. Applications of tracking-differentiator and time varying high gain observer[D]. Taiyuan:Shanxi University, 2015(in Chinese).
文章导航

/