电子电气工程与控制

一种改进的运载火箭迭代制导方法

  • 马宗占 ,
  • 许志 ,
  • 唐硕 ,
  • 张迁
展开
  • 1. 西北工业大学 航天学院, 西安 710072;
    2. 陕西省空天飞行器设计技术重点实验室, 西安 710072

收稿日期: 2020-05-13

  修回日期: 2020-06-02

  网络出版日期: 2020-07-17

Improved iterative guidance method for launch vehicles

  • MA Zongzhan ,
  • XU Zhi ,
  • TANG Shuo ,
  • ZHANG Qian
Expand
  • 1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Shaanxi Key Laboratory of Aerospace Flight Vehicle Technology, Xi'an 710072, China

Received date: 2020-05-13

  Revised date: 2020-06-02

  Online published: 2020-07-17

摘要

为提高运载火箭在大气层外当推力出现故障条件下制导算法的最优性、鲁棒性和适应性,提出了一种改进的迭代制导方法。该方法以基于最优控制理论推导的解析形式作为最优控制解,并推导出以5个轨道根数作为终端约束的横截条件,增强了算法的最优性;迭代过程中采用高斯-勒让德方法计算推力积分,并采用球极坐标系下泰勒多项式逼近方法计算引力积分,提高了故障模式下算法的积分精度;该算法采用降维迭代求解模式,并结合对控制变量的合理限幅,保障了推力故障条件下算法的实时性和收敛性。分别基于蒙特卡洛打靶和推力故障条件下进行仿真验证,结果验证了所提方法具有较强的最优性、鲁棒性和故障适应能力。

本文引用格式

马宗占 , 许志 , 唐硕 , 张迁 . 一种改进的运载火箭迭代制导方法[J]. 航空学报, 2021 , 42(2) : 324218 -324218 . DOI: 10.7527/S1000-6893.2020.24218

Abstract

To improve the optimality, robustness and adaptability of the guidance method for the launch vehicle in case of thrust fault outside the atmosphere, this paper proposes an improved iterative guidance method which derives the transversality condition with five orbital elements as the terminal constraint using the analytical expression based on the optimal control theory as the optimal control solution, thereby enhancing the optimization of the algorithm. In the iterative process, a Gauss Legendre integral method is adopted to calculate the thrust integral, and a Taylor polynomial approximation method is used to calculate the gravity integral, improving the integration accuracy in the fault mode. The proposed method adopts the dimension reduction iteration mode and the reasonable limiting of the control variables to ensure the real-timeness and convergence of the algorithm under the condition of thrust fault. The simulation results based on the Monte Carlo method and thrust fault conditions show the strong optimality, robustness and fault adaptability of the proposed method.

参考文献

[1] JING W, ZHENG X, WEI P, et al. An ascent iterative guidance algorithm for solid rocket concerned with multiconstraints[C]//The 27th Chinese Control and Decision Conference (2015 CCDC). Piscataway:IEEE Press, 2015.
[2] 吕新广, 宋征宇. 长征运载火箭制导方法[J]. 宇航学报, 2017, 38(9):895-902. LV X G, SONG Z Y. Guidance methods of Long-March launch vehicles[J]. Journal of Astronautics, 2017, 38(9):895-902(in Chinese).
[3] 宋征宇. 从准确、精确到精益求精——载人航天推动运载火箭制导方法的发展[J]. 航天控制, 2013, 31(1):4-10. SONG Z Y. From accurate, precise to perfect——manned space promotes the development of guidance method on launch vehicle[J]. Aerospace Control, 2013, 31(1):4-10(in Chinese).
[4] HAEUSSERMANN W. Guidance and control of Saturn launch vehicles[C]//AIAA 2nd Annual Meeting. Reston:AIAA, 1965.
[5] CHANDLER D C, SMITH I E. Development of the iterative guidance mode with its application to various vehicles and missions[J]. Journal of Spacecraft and Rockets, 1967,4(7):898-903.
[6] BRAND T J, BROWN D W, HIGGINS J P. Space shuttle GNC equation document NO. 24 unified powered flight guidance:NAS9-10268[R]. Washington, D.C.:NASA, 1973.
[7] MCHENRY R L, LONG A D, COCKRELL B F, et al. Space shuttle ascent guidance, navigation, and control[J]. Journal of the Astronautical Sciences, 1979, 27(1):1-38.
[8] JAGGERS R F. Asymmetrical booster ascent guidance and control system design study. Volume 5:Space shuttle powered explicit guidance:NASA CR 140191[R]. Washington, D.C.:NASA, 1974.
[9] JAGGERS R F. An explicit solution to the exoatmopheric powered flight guidance and trajectory optimization problem for rocket propelled vehicles[C]//AIAA Guidance and Control Conference. Reston:AIAA, 1977.
[10] VON DER PORTEN P, AHMAD N, HAWKINS M, et al. Powered explicit guidance modifications and enhancements for Space Launch System Block-1 and Block-1B vehicles[C]//41st AAS GNC Conference, 2018.
[11] 陈新民, 余梦伦. 迭代制导在运载火箭上的应用研究[J].宇航学报, 2003, 24(5):484-489. CHEN X M, YU M L. Study of iterative guidance application to launch vehicles[J]. Journal of Astronautics, 2003, 24(5):484-489(in Chinese).
[12] 茹家欣. 液体运载火箭的一种迭代制导方法[J]. 中国科学E辑:技术科学, 2009,39(4):696-706. RU J X. An iterative guidance method for liquid launch vehicle[J]. Science in China Series E:Technological Sciences, 2009, 39(4):696-706(in Chinese).
[13] BROWN K, JOHNSON G. Real-time optimal guidance[J]. IEEE Transactions on Automatic Control, 1967, 12(5):501-506.
[14] BROWN K R, HAROLD E F, JOHNSON G W. Some new results on space shuttle atmospheric ascent optimization[C]//Guidance, Control and Flight Mechanics Conference, 1970.
[15] DUKEMAN G, CALISE A. Enhancements to an atmospheric ascent guidance algorithm[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2003.
[16] LU P, GRIFFIN B J, DUKEMAN G A, et al. Rapid optimal multiburn ascent planning and guidance[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6):1656-1664.
[17] LU P, PAN B. Highly constrained optimal launch ascent guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(2):404-414.
[18] 傅瑜, 陈功, 卢宝刚, 等. 基于最优解析解的运载火箭大气层外自适应迭代制导方法[J]. 航空学报, 2011, 32(9):1696-1704. FU Y, CHEN G, LU B G, et al. A vacuum adaptive iterative guidance method of launch vehicle based on optimal analytical solution[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1696-1704(in Chinese).
[19] 邓逸凡, 李超兵, 王志刚. 一种基于轨道要素形式终端约束的航天器空间变轨迭代制导算法[J]. 航空学报, 2015, 36(6):1975-1982. DENG Y F, LI C B, WANG Z G. An iterative guidance algorithm using orbital elements as terminal constraints for spacecraft orbit transfer[J]. Acta Aeronautica et Astronautica Sinica, 2015,36(6):1975-1982(in Chinese).
[20] 李超兵, 吕春红, 尚腾. 一种基于轨道根数约束的最优制导方法[J]. 航空学报, 2018, 39(4):203-212. LI C B, LV C H, SHANG T. An optimal guidance method based on orbital element constraints[J]. Acta Aeronautica et Astronautica Sinica, 2018,39(4):203-212(in Chinese).
[21] AHMAD N, HAWKINS M, VON DERPORTEN P, et al. Closed loop guidance trade study for Space Launch System Block-1B vehicle[C]//41st AAS GNC Conference, 2018.
[22] 周凤岐,周军,郭建国. 现代控制理论基础[M]. 西安:西北工业大学出版社,2011. ZHOU F Q, ZHOU J, GUO J G. Theoretical basis of modern control[M]. Xi'an:Northwest University of Technology Press, 2011.
文章导航

/