综述

航天器自主导航状态估计方法研究综述

  • 王大轶 ,
  • 侯博文 ,
  • 王炯琦 ,
  • 葛东明 ,
  • 李茂登 ,
  • 徐超 ,
  • 周海银
展开
  • 1. 北京空间飞行器总体设计部, 北京 100094;
    2. 国防科技大学, 文理学院, 长沙 410073;
    3. 北京控制工程研究所, 北京, 100094

收稿日期: 2020-05-28

  修回日期: 2020-06-16

  网络出版日期: 2020-07-06

基金资助

国家杰出青年科学基金(61525301);国家自然科学基金(61690215,61903366)

State estimation method for spacecraft autonomous navigation: Review

  • WANG Dayi ,
  • HOU Bowen ,
  • WANG Jiongqi ,
  • GE Dongming ,
  • LI Maodeng ,
  • XU Chao ,
  • ZHOU Haiyin
Expand
  • 1. Beijing Institute of Spacecraft System Engineering, Beijing 100094, China;
    2. College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China;
    3. Beijing Institute of Control Engineering, Beijing 100094, China

Received date: 2020-05-28

  Revised date: 2020-06-16

  Online published: 2020-07-06

Supported by

National Science Fund for Distinguished Young Scholars (61525301);National Natural Science Foundation of China (61690215, 61903366)

摘要

自主导航是航天器自主运行的核心关键技术。状态估计是实现航天器自主导航的核心手段,是指实时确定航天器在轨位置、速度和姿态等导航参数,是航天器自主导航技术的重点发展方向之一。首先,针对航天器自主导航的实际需求,阐述了研究航天器自主导航状态估计方法的必要性,具体从导航系统可观测性分析、导航滤波算法、导航系统误差补偿3个方面介绍了航天器自主导航状态估计方法的研究现状;然后,分析并总结状态估计方法在航天器自主导航系统中的实际应用;最后,结合理论研究和实际应用,给出了状态估计方法目前存在的主要问题并对其后续发展进行了展望。

本文引用格式

王大轶 , 侯博文 , 王炯琦 , 葛东明 , 李茂登 , 徐超 , 周海银 . 航天器自主导航状态估计方法研究综述[J]. 航空学报, 2021 , 42(4) : 524310 -524310 . DOI: 10.7527/S1000-6893.2020.24310

Abstract

Autonomous navigation is the key technology of spacecraft autonomous operation, while state estimation, the core means of spacecraft autonomous navigation which refers to the real-time determination of spacecraft orbit position, velocity, attitude and other navigation parameters, is one of the key development directions of the spacecraft autonomous navigation technology. Aiming at the practical requirements of the spacecraft autonomous navigation, this paper illustrates the necessity of studying spacecraft autonomous navigation state estimation method and introduces its research status from three aspects, including observability analysis of the navigation system, the navigation filtering algorithm, and error compensation of the navigation system. Then practical applications of the state estimation method in the spacecraft autonomous navigation system is analyzed and summarized. Finally, based on theoretical research and practical applications, the main problems of the state estimation method are presented and the future developments are prospected.

参考文献

[1] 杨保华. 航天器制导、导航与控制[M]. 北京:中国科学技术出版社, 2011. YANG B H. Spacecraft guidance, navigation and control[M]. Beijing:China Science and Technology Press, 2011(in Chinese).
[2] 王大轶, 魏春岭, 熊凯. 航天器自主导航技术[M]. 北京:国防工业出版社, 2017(in Chinese). WANG D Y, WEI C L, XIONG K. Autonomous spacecraft navigation technology[M]. Beijing:National Defense Industry Press, 2017.
[3] TRUSZKOWSKI W, HALLOCK H, ROUFF C, et al. Autonomous and autonomic systems:With applications to NASA intelligent spacecraft operations and exploration systems[M]. Berlin:Springer Science & Business Media, 2009:1-4.
[4] CHORY M, HOFFMAN D, LEMAY J. Satellite autonomous navigation-status and history[C]//PLANS'86-Position Location and Navigation Symposium, 1986:110-121.
[5] BHATIA R, GELLER D K. RAON:Revolution in Autonomous Orbital Navigation[C]//AAS Guidance and Control Conference, 2018:18-81.
[6] KOZOREZ D A, KRUZHKOV D M. Autonomous navigation of the space debris collector[J]. INCAS Bulletin, 2019, 11:105-113.
[7] GREWAL M S, ANDREWS A P. Applications of Kalman filtering in aerospace 1960 to the present historical perspectives[J]. IEEE Control Systems Magazine, 2010, 30(3):69-78.
[8] 秦永元, 张洪钺, 汪叔华. 卡尔曼滤波与组合导航原理[M]. 2版.西安:西北工业大学出版社, 2012:3-4. QIN Y Y, ZHANG H Y, WANG S H. Kalman filtering and integrated navigation principles[M]. 2nd Edition. Xi'an:Northwestern Polytechnical University Press, 2012:3-4(in Chinese).
[9] 王大轶, 李茂登, 黄翔宇, 等. 航天器多源信息融合自主导航技术[M]. 北京:北京理工大学出版社, 2018:1-8. WANG D Y, LI M D, HUANG X Y et al. Spacecraft autonomous navigation technology based on multi-source information fusion[M]. Beijing:Beijing Institute of Technology Press, 2018:1-8(in Chinese).
[10] KALMAN R E. Contributions to the theory of optimal control[J]. Computer Science, Mathematics, 1960, 5(2):102-119.
[11] KALMAN R E. On the general theory of control systems[C]//Proceedings First International Conference on Automatic Control, 1960.
[12] KALMAN R E. Mathematical description of linear dynamical systems[J]. Journal of the Society for Industrial and Applied Mathematics, Series A:Control, 1963, 1(2):152-192.
[13] 张莲, 胡晓倩, 王士彬. 现代控制理论[M]. 北京:清华大学出版社, 2008. ZHANG L, HU X Q, WANG S B. Modern control theory[M]. Beijing:Tsinghua University Press, 2008(in Chinese).
[14] MÜLLER P, WEBER H. Analysis and optimization of certain qualities of controllability and observability for linear dynamical systems[J]. Automatica, 1972, 8(3):237-246.
[15] BAR-ITZHACK I. Observability studies of inertial navigation systems[C]//Guidance, Navigation and Control Conference, 1989:3580.
[16] BAR-ITZHACK I. Observability analysis of inertial navigation systems during in-flight alignment[C]//Guidance, Navigation and Control Conference, 1988:4125.
[17] KAILATH T. Linear systems[M]. Englewood Cliffs:Prentice-Hall, 1980:24-30.
[18] CHEN Z, JIANG K, HUNG J C. Local observability matrix and its application to observability analyses[C]//IECON'90:16th Annual Conference of IEEE Industrial Electronics Society, 1990:100-103.
[19] GOSHEN-MESKIN D, BARITZHACK I Y. Observability analysis of piece-wise constant systems. I. Theory[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(4):1056-1067.
[20] GOSHEN-MESKIN D, BAR-ITZHACK I. Observability analysis of piece-wise constant systems. Ⅱ. Application to inertial navigation in-flight alignment (military applications)[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(4):1068-1075.
[21] 杨拥民. 动态系统可观测性分析与应用若干关键技术研究[D]. 长沙:国防科学技术大学, 2014:4. YANG Y M. Research on some key technologies of observability analysis and application of dynamic system[D]. Changsha:National University of Defense Technology 2014:4(in Chinese).
[22] HERMANN R, KRENER A. Nonlinear controllability and observability[J]. IEEE Transactions on Automatic Control, 1977, 22(5):728-740.
[23] ISIDORI A. Nonlinear control systems[M]. Berlin:Springer-Verlag, 1985.
[24] LÓPEZ T, ALVAREZ J. On the effect of the estimation structure in the functioning of a nonlinear copolymer reactor estimator[J]. Journal of Process Control, 2004, 14(1):99-109.
[25] VAN D H J, MUGELLESI R. Analytical models for relative motion under constant thrust[J]. Journal of Guidance Control & Dynamics, 1990, 13(4):644-650.
[26] JIUREN L I, HAIYANG L I, TANG G J, et al. Research on the strategy of angles-only relative navigation for autonomous rendezvous[J]. Science China Technological Sciences, 2011, 54(7):221-228.
[27] DOCHAIN D, TALI-MAAMAR N, BABARY J. On modelling, monitoring and control of fixed bed bioreactors[J]. Computers & Chemical Engineering, 1997, 21(11):1255-1266.
[28] LUO X, BHAKTA T. Estimating observation error covariance matrix of seismic data from a perspective of image denoising[J]. Computational Geosciences, 2017, 21(2):205-222.
[29] LEE T S, DUNN K P, CHANG C B. On observability and unbiased estimation of nonlinear systems[M]//System Modeling and optimization. Berlin:Springer Verlag, 1982:258-266.
[30] OGAWA J. Contributions to the theory of systematic statistics. I[J]. Osaka Mathematical Journal, 1951, 3(2):175-213.
[31] CRAMER H. Mathematical methods of statistics[M]. Princeton:Princeton University Press, 1946:525-548.
[32] SIMON D. Optimal state estimation:Kalman, H-infinity, and nonlinear approaches[M]. Hoboken:John Wiley & Sons, 2006:55.
[33] 潘泉, 杨峰, 叶亮, 等. 一类非线性滤波器——UKF综述[J]. 控制与决策, 2005, 20(5):481-489,494. PAN Q, YANG F, YE L, et al. Survey of a kind of nonlinear filters-UKF[J]. Control and Decision, 2005, 20(5):481-489,494(in Chinese).
[34] BELL B M, CATHEY F W. The iterated Kalman filter update as a Gauss-Newton method[J]. IEEE Transactions on Automatic Control, 1993, 38(2):294-297.
[35] WANG D, LI M, HUANG X, et al. Kalman filtering for a quadratic form state equality constraint[J]. Journal of Guidance Control & Dynamics, 2014, 37(3):951-958.
[36] JIAO Y, ZHOU H, WANG J, et al. Linearization error? s measure and its influence on the accuracy of MEKF based attitude determination method[J]. Aerospace Science & Technology, 2012, 16(1):61-69.
[37] GORDON N J, SALMOND D J, SMITH A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEE Proceedings F:Radar and Signal Processing,1993, 140(2):107-113.
[38] ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2):174-188.
[39] ZHAN R, XIN Q, WAN J W. Modified unscented particle filter for nonlinear Bayesian tracking[J]. Journal of Systems Engineering and Electronics, 2008, 19(1):7-14.
[40] HOU B, HE Z, SUN B, et al. Unscented particle filter for α-Jerk model with colored noise[C]//2017 Chinese Automation Congress (CAC), 2017:6178-6183.
[41] JULIER S, UHLMANN J, DURRANTWHYTE H F. A new method for nonlinear transformation of means and covariances in filters and estimates[J]. IEEE Transactions on Automatic Control, 2000, 45(3):477-482.
[42] JULIER S J, UHLMANN J K. Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations[C]//Proceedings of the 2002 American Control Conference, 2002:887-892.
[43] ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing, 2002, 50(2):174-188.
[44] LIGGINS M, HALL D, LLINAS J. Handbook of multisensor data fusion:Theory and practice[M]. Florida:CRC Press, 2017:319-344.
[45] JULIER S J, UHLMANN J K. New extension of the Kalman filter to nonlinear systems[C]//Signal Processing, Sensor Fusion, and Target Recognition VI. Orlando:Multisensor Fusion Tracking and Resource Management, 1997:182-193.
[46] 刘也. 弹道目标实时跟踪的稳健高精度融合滤波方法[D]. 长沙:国防科学技术大学, 2011:37-68. LIU Y. The robust and high accurate fusion filter for trajectory target realtime tracking[D]. Changsha:National University of Defense Technology, 2011:37-68(in Chinese).
[47] YIN J, ZHANG J Q, ZESEN Z. Gaussian sum PHD filtering algorithm for nonlinear non-Gaussian models[J]. Chinese Journal of Aeronautics, 2008, 21(4):341-351.
[48] KOTECHA J H, DJURIC P M. Gaussian sum particle filtering[J]. IEEE Transactions on Signal Processing, 2003, 51(10):2602-2612.
[49] ČURN J, MARINESCU D, LACEY G, et al. Estimation with non-white Gaussian observation noise using a generalized ensemble Kalman filter[C]//2012 IEEE International Symposium on Robotic and Sensors Environments Proceedings. Piscataway, NJ:IEEE Press, 2012:85-90.
[50] 朱蓉. CKF滤波算法及其在航天器自主导航中的应用[D]. 长沙:国防科学技术大学, 2015:1-10. ZHU R. CKF and its application on spacecraft autonomous navigation[D]. Changsha:National University of Defense Technology, 2015:1-10(in Chinese).
[51] 卢航, 郝顺义, 彭志颖, 等. 基于边缘采样的简化高阶CKF在非线性快速传递对准中的应用[J]. 航空学报, 2019, 40(3):189-202. LU H, HAO S Y, PENG Z Y, et al. Applica tion of marginal reduced high-degree cubature Kalman filter to nonlinear rapid transfer alignment[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):189-202(in Chinese).
[52] ZHAO X, LIU G, WANG L, et al. Augmented cubature Kalman filter/Kalman filter integrated algorithm[J]. Infrared & Laser Engineering, 2014, 43(2):647-653.
[53] 李敏, 张迎春, 耿云海, 等. 鲁棒EKF在脉冲星导航系统中的应用[J].航空学报, 2016, 37(4):1305-1315. LI M, ZHANG Y C, GENG Y H, et al. A robust extended Kalman filter algorithm for X-ray pulsar navigation system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1305-1315(in Chinese).
[54] ELSAYED A, GRIMBLE M. A new approach to the H∞ design of optimal digital linear filters[J]. IMA Journal of Mathematical Control and Information, 1989, 6(2):233-251.
[55] GRIMBLE M J, ELSAYED A. Solution of the H/sub infinity/optimal linear filtering problem for discrete-time systems[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(7):1092-1104.
[56] DE SOUZA C E, FRAGOSO M D. H infinity filtering for discrete-time linear systems with Markovian jumping parameters[J]. International Journal of Robust and Nonlinear Control:IFAC-Affiliated Journal, 2003, 13(14):1299-1316.
[57] LU X, XIE L, ZHANG H, et al. Robust Kalman filtering for discrete-time systems with measurement delay[J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2007, 54(6):522-526.
[58] HASSIBI B, KAILATH T. H infinity adaptive filtering[C]//International Conference on Acoustics, Speech, and Signal Processing, 1995:949-952.
[59] XIONG K, LIU L D, LIU Y W. Regularized robust filter for spacecraft attitude determination[J]. Chinese Journal of Aeronautics, 2011, 24(4):467-475.
[60] PETRUS P. Robust Huber adaptive filter[J]. IEEE Transactions on Signal Processing, 1999, 47(4):1129-1133.
[61] PRINCIPE J C. Information theoretic learning:Renyi's entropy and kernel perspectives[M]. Berlin:Springer Science & Business Media, 2010:257-489.
[62] CHEN B, LIU X, ZHAO H, et al. Maximum correntropy Kalman filter[J]. Automatica, 2017, 76(1):70-77.
[63] HOU B, HE Z, ZHOU X, et al. Maximum correntropy criterion Kalman filter for α-Jerk tracking model with non-Gaussian noise[J]. Entropy, 2017, 19(12):648.
[64] HOU B, HE Z, LI D, et al. Maximum correntropy unscented Kalman filter for ballistic missile navigation system based on SINS/CNS deeply Integrated Mode[J]. Sensors, 2018, 18(6):1724.
[65] XIE X Q, ZHOU D H, JIN Y H. Strong tracking filter based adaptive generic model control[J]. Journal of Process Control, 1999, 9(4):337-350.
[66] SAGE A P, HUSA G W. Adaptive filtering with unknown prior statistics[C]//Joint Automatic Control Conference, 1969(7):760-769.
[67] 朱云峰,孙永荣,赵伟,等.包含乘性噪声自适应修正的非合作目标相对导航算法[J].航空学报,2019,40(7):245-255. ZHU Y F, SUN Y R, ZHAO W, et al. Relative navigation algorithm for non-cooperative target with adaptive modification of multiplicative noise[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):245-255(in Chinese).
[68] MAGILL D T. Optimal adaptive estimation of sampled stochastic processes[J]. IEEE Transactions on Automatic Control, 1965, 10(4):434-439.
[69] BLOM H P. An efficient filter for abruptly changing systems[C]//IEEE Conference on Decision and Control, 1984:656-658.
[70] LI X R, BAR-SHALOM Y. Multiple-model estimation with variable structure[J]. IEEE Transactions on Automatic Control, 1996, 41(4):478-493.
[71] LI W, JIA Y. An information theoretic approach to interacting multiple model estimation[J]. IEEE Transactions on Aerospace & Electronic Systems, 2015, 51(3):1811-1825.
[72] 熊智, 邵慧, 华冰, 等. 改进故障隔离的容错联邦滤波[J]. 航空学报, 2015, 36(3):929-938. XIONG Z, SHAO H, HUA B, et al. An improved fault tolerant federated filter with fault isolation[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):929-938(in Chinese).
[73] MUTAMBARA A G. Decentralized estimation and control for multisensor systems[M]. Florida:CRC press, 1998:34-57.
[74] HALL D L, MCMULLEN S A. Mathematical techniques in multisensor data fusion[M]. Fitchburg:Artech House, 2004:1-6.
[75] 何友, 王国宏, 陆大金, 等. 多传感器信息融合及应用[M]. 北京:国防工业出版社, 2000:102-134. HE Y, WANG G H, LU D J, et al. Multi-sensor information fusion and application[M]. Beijing:National Defense Industry Press, 2000:102-134(in Chinese).
[76] 韩崇昭, 朱洪艳, 段战胜. 多源信息融合[M]. 第2版.北京:清华大学出版社, 2010:267-324. HAN C Z, ZHU H Y, DUAN Z S. Multi-source Information Fusion[M]. (2nd Edition). Beijing:Tsinghua University Press, 2010:267-324(in Chinese).
[77] 余安喜, 胡卫东, 周文辉. 多传感器量测融合算法的性能比较[J]. 国防科技大学学报, 2003, 25(6):39-44. YU A, HU W, ZHOU W. Performance comparison of multisensor measurement fusion algorithms[J]. Journal of National University of Defense Technology, 2003, 25(6):39-44(in Chinese).
[78] 管旭军, 芮国胜, 周旭, 等. 基于数据压缩的多传感器不敏滤波算法[J]. 武汉大学学报(信息科学版), 2010, 35(4):97-101. GUAN X J, RUI G S, ZHOU X, et al. Multisensor unscented filter algorithm based on data compression[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4):97-101(in Chinese).
[79] ROY S, ILTIS R A. Decentralized linear estimation in correlated measurement noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(6):939-941.
[80] JIN X B, SUN Y X. Optimal centralized state fusion estimation for multi-sensor system with correlated measurement noise[C]//Proceedings of 2003 IEEE Conference on Control Applications. Piscetaway:IEEE Press, 2003:770-772.
[81] LI X R. Canonical transform for tracking with kinematic models[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(4):1212-1224.
[82] CARLSON N A. Federated filter for fault-tolerant integrated navigation systems[C]//IEEE PLANS'88. Position Location and Navigation Symposium, Record. ‘Navigation into the 21 st Century’, Piscetaway:IEEE Press, 1988.
[83] LI M, JING W, HUANG X. Dual cone-Scanning horiozon sensor orbit and attitude corrections for Earth Oblateness[J]. Journal of Guidance Control & Dynamics, 2012, 35(1):344-349.
[84] XIONG K, LIU L. Compensation for periodic star sensor measurement error on satellite[J]. Asian Journal of Control, 2013, 15(5):1304-1312.
[85] XIONG K, ZONG H. Performance evaluation of star sensor low frequency error calibration[J]. Acta Astronautica, 2014, 98(1):24-36.
[86] YANG J, WANG K, XIONG K. In-orbit error calibration of star sensor based on high resolution imaging payload[C]//2016 IEEE Sensors. Piscataway:IEEE Press, 2015.
[87] KIM K H, LEE J G, PARK C G. Adaptive two-stage extended Kalman filter for a fault-tolerant INS-GPS loosely coupled system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(1):125-137.
[88] LIU H B, TAN J C, JIA H, et al. Autonomous on-orbit calibration of a star tracker camera[J]. Optical Engineering, 2011, 50(2):023604.
[89] 张春青, 刘良栋, 李勇. 测量带有常值偏差时卫星自主定轨系统可观性分析[J]. 中国空间科学技术, 2006, 26(6):1-7.13. ZHANG C L, LIU L D, LI Y. Observability analysis for biased satellites autonomous orbit determination systems[J]. Chinese Space Science and Technology, 2006, 6(1):1-13(in Chinese).
[90] 魏春岭, 张斌, 张春青. 一种姿态机动辅助下的天文导航系统偏差自校准方法[J]. 宇航学报, 2010, 31(1):93-97. WEI C L, ZHANG B, ZHANG C Q. An attitude maneuvering aided self-calibration algorithm for celestial autonomous navigation system[J]. Journal of Astronautics, 2010, 31(1):93-97(in Chinese).
[91] 宁晓琳,房建成.航天器自主天文导航系统的可观测性及可观测度分析[J]. 北京航空航天大学学报, 2005, 31(6):673-677. NING X, FANG J. Analysis of observability and the degree of observability in autonomous celestial navigation[J]. Journal of Beijing University of Aeronautics & Astronautics, 2005, 31(6):103-116(in Chinese).
[92] NING X, WANG F, FANG J. Implicit UKF and its observability analysis of satellite stellar refraction navigation system[J]. Aerospace Science and Technology, 2016, 54(1):49-58.
[93] QIAO G, WANG D, LI T. Observability analysis of autonomous navigation system for Earth-lunar transfer orbit phase[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway:IEEE Press, 2008:946-951.
[94] XIONG K, WEI C L, LIU L D. Autonomous navigation for a group of satellites with star sensors and inter-satellite links[J]. Acta Astronautica, 2013, 86(3):10-23.
[95] GAIAS G, D'AMICO S, ARDAENS J-S. Angles-only navigation to a noncooperative satellite using relative orbital elements[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(2):439-451.
[96] AMICO S D, ARDAENS J, GAIAS G, et al. Noncooperative rendezvous using angles-only optical navigation:system design and flight results[J]. Journal of Guidance Control and Dynamics, 2013, 36(6):1576-1595.
[97] SULLIVAN J, D'AMICO S. Nonlinear Kalman filtering for improved angles-only navigation using relative orbital elements[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(9):1-18.
[98] GONG B, LUO J, LI S, et al. Observability criterion of angles-only navigation for spacecraft proximity operations[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(12):4302-4315.
[99] LI Y, ZHANG A. Observability analysis and autonomous navigation for two satellites with relative position measurements[J]. Acta Astronautica, 2019, 163(1):77-86.
[100] FENG G, WU W, WANG J. Observability analysis of a matrix Kalman filter-based navigation system using visual/inertial/magnetic sensors[J]. Sensors, 2012, 12(7):8877-8894.
[101] WANG L, XIA Y. Observability analysis of Mars entry integrated navigation[J]. Advances in Space Research, 2015, 56(5):952-963.
[102] 黄翔宇, 崔平远, 崔祜涛. 深空自主导航系统的可观性分析[J]. 宇航学报, 2006, 27(3):332-337. HUANG X Y, CUI P Y, CUI H T. Observability analysis of deep space autonomous navigation system[J]. Journal of Astronautics, 2006, 27(3):332-337(in Chinese).
[103] 董天舒, 王大轶, 李文博. 近地小行星仅测角相对导航可观性判据[J]. 控制理论与应用, 2019, 36(12):1979-1987. DONG T S, WANG D Y, LI W B, Observability criteria for angles-only relative navigation to a near-Earth asteroid[J]. Control Theory & Application, 2019, 36(12):1979-1987(in Chinese).
[104] XU C, WANG D, HUANG X. Autonomous navigation based on sequential images for planetary landing in unknown environments[J]. Journal of Guidance Control and Dynamics, 2017, 40(10):2587-2602.
[105] 刘萍, 王大轶, 黄翔宇. 环月探测器自主天文导航系统的可观度分析[J]. 中国空间科学技术, 2007, 27(6):12-18. LIU P, WANG D Y, HUANG X Y. Analysis of observable degree in autonomous celestial navigation system of Lunar Orbiter[J]. Chinese Space Science and Technology, 2007, 27(6):12-18(in Chinese).
[106] BHASKARAN S, RIEDEL J E, SYNNOTT S P. Autonomous nucleus tracking for comet/asteroid encounters:The STARDUST example[C]//1998 IEEE Aerospace Conference Proceedings. Snowmass:IEEE Aerospace and Electronics Systems Society, 1998:353-365.
[107] PSIAKI M L. Global magnetometer-based spacecraft attitude and rate estimation[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(2):240-250.
[108] IWATA T. Attitude dynamics and disturbances of the advanced land observing satellite (ALOS):Modeling, identification, and mitigation[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston:AIAA, 2008:6263.
[109] LI M Z, XU B. Autonomous orbit and attitude determination for Earth satellites using images of regular-shaped ground objects[J]. Aerospace Science and Technology, 2018, 80(1):192-202.
[110] 崔平远, 常晓华, 崔祜涛. 基于可观测性分析的深空自主导航方法研究[J]. 宇航学报, 2011, 32(10):2115-2124. CUI P Y, CHANG X H, CUI H T. Research on observability analysis-based autonomous navigation method for deep space[J]. Journal of Astronautics, 2011, 32(10):2115-2124(in Chinese).
[111] SEKHAVAT P, GONG Q, ROSS I M. NPSAT1 parameter estimation using unscented Kalman filtering[C]//2007 American Control Conference,2007:4445-4451.
[112] CÔTÉ J, DE LAFONTAINE J. Magnetic-only orbit and attitude estimation using the square-root unscented Kalman filter:application to the PROBA-2 spacecraft[C]//AIAA Guidance, Navigation and Control Conference and Exhibit.Reston:AIAA, 2008:6293.
[113] NORDLUND P J, GUSTAFSSON F. Sequential Monte Carlo filtering techniques applied to integrated navigation systems[C]//American Control Conference, 2001:4375-4380.
[114] NING X, FANG J. Spacecraft autonomous navigation using unscented particle filter-based celestial/Doppler information fusion[J]. Measurement Science and Technology, 2008, 19(9):095203.
[115] CHANDRA K P B, GU D W, POSTLETHWARITE I. Cubature Kalman filter based localization and mapping[J]. IFAC Proceedings Volumes, 2011, 44(1):2121-2125.
[116] 邓广慧, 廖卓凡, 朱蓉, 等. 基于日地月信息的航天器全弧段自主容积卡尔曼滤波导航[J]. 中国空间科学技术, 2018, 38(1):70. DENG G H, LIAO Z F, ZHU R, et al. Spacecraft autonomous navigation with cubature Kalman filter based on Sun-Earth-Moon information[J]. Chinese Space Science and Technology, 2018, 38(1):70(in Chinese).
[117] 孙兆伟, 邓泓, 刘皓, 等. 基于鲁棒H∞ 滤波的追踪卫星相对导航算法研究[J]. 宇航学报, 2011, 32(7):1462-1470. SUN Z W, DENG H, LIU H, et al. Relative navigation algorithm for chaser satellite based on robust H∞ filtering[J]. Journal of Astronautics, 2011, 32(7):1462-1470(in Chinese).
[118] WANG X, CUI N, GUO J. Huber-based unscented filtering and its application to vision-based relative navigation[J]. IET Radar, Sonar & Navigation, 2010, 4(1):134-141.
[119] KARLGAARD C D, SCHAUB H. Adaptive nonlinear Huber-based navigation for rendezvous in elliptical orbit[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(2):388-402.
[120] LIU X, QU H, ZHAO J, et al. Maximum correntropy unscented Kalman filter for spacecraft relative state estimation[J]. Sensors, 2016, 16(9):1530.
[121] 李丹, 刘建业, 熊智. 强跟踪滤波器在卫星紫外导航中的应用研究[J]. 传感器与微系统, 2008, 27(9):11-13. LI D, LIU J Y, XIONG Z. Application research of strong tracking filter in satellite navigation system based on ultraviolet sensor[J]. Transducer and Microsystem Technologies, 2008, 27(9):11-13(in Chinese).
[122] 任之幸. 自适应自主卫星导航方法的研究[J]. 宇航学报, 1986, 7(3):44-50. REN Z X. An approach of adaptive-autonomous satellite navigation[J]. Journal of Astronautics, 1986, 7(3):44-50(in Chinese).
[123] XIONG K, LIANG T, LEI Y J. Multiple model Kalman filter for attitude determination of precision pointing spacecraft[J]. Acta Astronautica, 2011, 68(8):843-852.
[124] 彭慧. 多模型自适应滤波及其应用研究[D]. 成都:电子科技大学, 2016:41-48. PENG H. Study on multi-model adaptive filtering and its application[D]. Chengdu:University of Electronic Science and Technology of China, 2016:41-48(in Chinese).
[125] 刘勇,徐世杰.基于联邦UKF算法的月球探测器自主组合导航[J]. 宇航学报, 2006, 27(3):518-521, 540. LIU Y, XU S J. Autonomous integrated navigation for lunar probe based on federated UKF algorithm[J]. Journal of Astronautics, 2006, 27(3):518-521, 540(in Chinese).
[126] QIAO L, LIU J, ZHENG G, et al. Integration of ultraviolet sensor and X-ray detector for navigation satellite orbit estimation[C]//2008 IEEE/ION Position, Location and Navigation Symposium. Monterey:The Institute of Navigation, 2008:696-703.
[127] HU X B, ZHAO J H, TU Z J. Research on the method of suppressing sun and moon's interference on infrared conical earth sensor[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(3):399-406.
[128] WANG J Q, XIONG K, ZHOU H Y. Low-frequency periodic error identification and compensation for star tracker attitude measurement[J]. Chinese Journal of Aeronautics, 2012, 25(4):615-621.
[129] 程会艳, 郝云彩, 熊凯, 等. 自适应两级UKF算法及其在时变偏差估计中的应用[J]. 空间控制技术与应用, 2010, 36(3):33-37. CHENG H Y, HAO Y C, XIONG K. An adaptive two-stage unscented Kalman filter and its application in unknown random bias[J]. Aerospace Control and Application, 2010, 36(3):33-37(in Chinese).
[130] ZHANG H, NIU Y, LU J, et al. On-orbit calibration for star sensors without priori information[J]. Optics Express, 2017, 25(15):18393-18409.
[131] WANG M, CHENG Y, YANG B, et al. On-orbit calibration approach for optical navigation camera in deep space exploration[J]. Optics Express, 2016, 24(5):5536-5554.
[132] CHANG J, GENG Y, GUO J, et al. Calibration of satellite autonomous navigation based on attitude sensor[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(1):185-192.
文章导航

/