材料工程与机械制造

机器人在轨装配无标定视觉伺服对准方法

  • 贾庆轩 ,
  • 段嘉琪 ,
  • 陈钢
展开
  • 北京邮电大学 自动化学院, 北京 100876

收稿日期: 2020-04-05

  修回日期: 2020-04-21

  网络出版日期: 2020-07-06

基金资助

国家自然科学基金(51975059);中央高校基本科研业务费专项资金(2019PTB-012)

Uncalibrated visual servo of space robots performing on-orbit assembly alignment task

  • JIA Qingxuan ,
  • DUAN Jiaqi ,
  • CHEN Gang
Expand
  • School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China

Received date: 2020-04-05

  Revised date: 2020-04-21

  Online published: 2020-07-06

Supported by

National Natural Science Foundation of China (51975059); Fundamental Research Funds for the Central Universities(2019PTB-012)

摘要

针对在轨装配过程中机器人"手眼"关系无法进行有效标定及机器人系统和被操作物惯性参数不定的情况,在传统的无标定视觉伺服基础上设计了深度估计器,基于机器人和图像运动的测量数据在线估计目标特征的深度值,并在机器人关节控制环中设计滑模控制器实时控制机器人关节运动,根据反馈图像信息纠正系统误差完成对准跟踪,通过仿真验证了方法的有效性。所提的无标定视觉伺服对准方法使机器人在装配过程中免去了复杂的"手眼"关系的标定程序,克服了机器人系统及被操作物惯性参数不确定性给装配精度造成的影响,提高了"手眼协调"的鲁棒性,保证机器人能够在复杂的太空环境下完成在轨装配任务。

本文引用格式

贾庆轩 , 段嘉琪 , 陈钢 . 机器人在轨装配无标定视觉伺服对准方法[J]. 航空学报, 2021 , 42(6) : 424063 -424063 . DOI: 10.7527/S1000-6893.2020.24063

Abstract

In the on-orbit assembly process of space robots, the relationship between their "hands" and "eyes" cannot be effectively calibrated, and the inertial parameters of the robot and the object being operated are variable, which may lead to assembly failure. To solve this problem, we design a depth estimator based on the traditional uncalibrated visual servo. It can estimate the depth value of the target feature online using the measurement data of the robot and the image motion. A sliding mode controller is designed in the space robot joint control ring to control the robot joint motion in real time, and the system error is corrected according to the feedback image information to complete alignment and tracking. Finally, the effectiveness of the method is verified by simulation. The uncalibrated visual servo alignment method proposed in this paper can free the space robot from the complicated calibration program, thereby overcoming the influence of uncertain inertial parameters on the assembly accuracy and improving the robustness of "hand-eye coordination" to ensure successful completion of on-orbit assembly tasks of the space robot in complex space environments.

参考文献

[1] WANG E, WU S, WU Z, et al. Distributed adaptive vibration control for solar power satellite during on-orbit assembly[J]. Aerospace Science and Technology, 2019, 94:105378.
[2] SAUNDERS C, LOBB D, SWEETING M, et al. Building large telescopes in orbit using small satellites[J]. Acta Astronautica, 2017, 141:183-195.
[3] SHE Y C, LI S, DU B, et al. On-orbit assembly mission planning considering topological constraint and attitude disturbances[J]. Acta Astronautica, 2018, 152:692-704.
[4] 梁斌, 杜晓东, 李成, 等. 空间机器人非合作航天器在轨服务研究进展[J]. 机器人, 2012, 34(2):242-256. LIANG B, DU X D, LI C, et al. Research progress on in-orbit service of space robot non-cooperative spacecraft[J]. Robot, 2012, 34(2):242-256(in Chinese).
[5] 崔乃刚, 王平, 郭继峰, 等. 空间在轨服务技术发展综述[J]. 宇航学报, 2007, 28(4):805-811. CUI N G, WANG P, GUO J F, et al. A review of on-orbit servicing[J]. Journal of Astronautics, 2007, 28(4):805-811(in Chinese).
[6] 贾平. 国外在轨装配技术发展简析[J]. 国际太空, 2016(12):61-64. JIA P. Development analysis of foreign on-orbit assembly technologies[J]. Space International, 2016(12):61-64(in Chinese).
[7] 杨延蕾, 江炜. 在轨3D打印及装配技术在深空探测领域的应用研究进展[J]. 深空探测学报, 2016, 3(3):282-287. YANG Y L, JIANG W. Review of on-orbit 3D printing and assembly technology for deep space exploration application[J]. Journal of Deep Space Exploration, 2016, 3(3):282-287(in Chinese).
[8] 王雪瑶. 国外在轨服务系统最新发展[J]. 国际太空, 2017(11):65-69. WANG X Y. Development of foreign on-orbit service systems[J]. Space International, 2017(11):65-69(in Chinese).
[9] 李团结, 马小飞, 岳华, 等. 大型空间天线在轨装配技术[J]. 载人航天, 2013, 19(1):86-90. LI T J, MA X F, YUE H, et al. On-orbit assembly technology of large space antennas[J]. Manned Spaceflight, 2013, 19(1):86-90(in Chinese).
[10] 刘冰雁, 叶雄兵, 周赤非, 等. 基于改进DQN的复合模式在轨服务资源分配[J]. 航空学报, 2020, 41(5):323630. LIU B Y, YE X B, ZHOU C F, et al. Allocation of composite mode on-orbit service resource based on improved DQN[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):323630(in Chinese).
[11] STARITZ P, SKAFF S, URMSON C, et al. Sky-worker:a robot for assembly, inspection and maintenance of large scale orbital facilities[C]//International Conference on Robotics & Automation, 2001:4180-4185.
[12] 王博, 言勇华. 基于图像的无标定视觉伺服系统[J].机械设计与研究, 2019, 35(3):135-139. WANG B, YAN Y H. Image based uncalibrated visual servoing system[J]. Machine Design & Research, 2019, 35(3):135-139(in Chinese).
[13] 陈梅, 车尚岳. 无标定视觉伺服机器人跟踪控制策略研究[J]. 控制工程, 2019, 26(6):1055-1059. CHEN M, CHE S Y. Research on tracking control strategy of uncalibrated robot visual servo system[J]. Control Engineering of China, 2019, 26(6):1055-1059(in Chinese).
[14] 陶波, 龚泽宇, 丁汉. 机器人无标定视觉伺服控制研究进展[J]. 力学学报, 2016,48(4):767-783. TAO B, LONG Z Y, DING H. Survey on uncalibrated robot visual servoing control[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(4):767-783(in Chinese).
[15] NI Z Y, LIU J G, WU Z G, et al. Identification of the state-space model and payload mass parameter of a flexible space manipulator using a recursive subspace tracking method[J]. Chinese Journal of Aeronautics, 2019, 32(2):303-320.
[16] OLIVEIRA T R, LEITE A C, PEIXOTO A J, et al. Overcoming limitations of uncalibrated robotics visual servoing by means of sliding mode control and switching monitoring scheme[J]. Asian Journal of Control, 2014, 16(3):752-764.
[17] CHEAH C C, LIU C, SLOTINE J J. Adaptive tracking control for robots with unknown kinematic and dynamic properties[J]. International Journal of Robotics Research, 2006, 25(3):283-296.
[18] CHEAH C C, LIU C, SLOTINEE J J. Adaptive vision based tracking control of robots with uncertainty in depth information[C]//International Conference on Robotics and Automation, 2007:2817-2822.
[19] SANTAMARIA A, GROSCH P, LIPPIELLO V, et al. Uncalibrated visual servo for unmanned aerial manipulation[J]. Transactions on Mechatronics, 2017, 22(4):1610-1621.
[20] CHEAH C C, LIU C, SLOTINE J J. Adaptive Jacobian vision based control for robots with uncertain depth information[J]. Automatica, 2010, 46(7):1228-1233.
[21] LIU Y H, WANG H, WANG C, et al. Uncalibrated visual servoing of robots using a depth-independent interaction matrix[J]. Transactions on Robotics, 2006, 22(4):804-817.
[22] LIANG X, HUANG X, WANG M, et al. Improved stability results for visual tracking of robotic manipulators based on the depth-independent interaction matrix[J]. Transactions on Robotics, 2011, 27(2):371-379.
文章导航

/