电子电气工程与控制

基于决策不确定性的多目标跟踪传感器管理

  • 田晨 ,
  • 裴扬 ,
  • 侯鹏 ,
  • 赵倩
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 光电控制技术重点实验室, 洛阳 471023

收稿日期: 2019-12-30

  修回日期: 2020-07-08

  网络出版日期: 2020-07-06

基金资助

航空科学基金(20185153032)

Decision uncertainty based sensor management for multi-target tracking

  • TIAN Chen ,
  • PEI Yang ,
  • HOU Peng ,
  • ZHAO Qian
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Science and Technology on Electro-Optic Control Laboratory, Luoyang 471023, China

Received date: 2019-12-30

  Revised date: 2020-07-08

  Online published: 2020-07-06

Supported by

Aeronautical Science Foundation of China (20185153032)

摘要

针对高杂波、电子干扰环境,在量测驱动的多目标滤波框架下提出了一种基于决策不确定性的传感器管理方法。首先,根据部分可观测马尔科夫决策过程的理论,给出了基于Rényi信息增量的传感器管理一般方法。其次,综合考虑决策过程的信息完整性、信息质量、信息的内涵等因素,在量测驱动的自适应滤波框架下,基于目标运动态势评估多目标决策不确定性水平,并选取最大决策不确定性目标。最后,以最大决策不确定性目标的信息增量最大化为准则进行传感器分配方案的求解。仿真实验表明所提方法能够有效抑制电子干扰、杂波对多目标跟踪及传感器分配的影响,与基于威胁的传感器管理方法相比,所提方法的平均最优子模式分配(OSPA)距离及平均计算时长均显著降低,且在高杂波、电子干扰情形下具有较高的可靠性。

本文引用格式

田晨 , 裴扬 , 侯鹏 , 赵倩 . 基于决策不确定性的多目标跟踪传感器管理[J]. 航空学报, 2020 , 41(10) : 323781 -323781 . DOI: 10.7527/S1000-6893.2020.23781

Abstract

For electronic countermeasures and dense clutter environments, a sensor management algorithm based on decision uncertainty using the measurement-driven multi-target filter is proposed. First, according to the theory of partially observable Markov decision process, a general sensor management approach based on Rényi divergence is presented. Meanwhile, taking into account the information integrity, information quality and information connotation in the decision-making process, we evaluate the multi-target decision uncertainty level based on the target motion situation in the measurement-driven adaptive filtering framework, subsequently selecting the maximum decision uncertainty target. Finally, the sensor allocation scheme is solved with the maximum information gain of the maximum decision uncertainty target as the criterion. The simulation results show that the proposed algorithm can effectively suppress the influence of electronic countermeasures and dense clutter on multi-target tracking and sensor management. Compared with the threat-based sensor management algorithm, the average Optimal Sub-Pattern Assignment (OSPA) distance and the average calculation time are significantly reduced. In cases of dense clutter and electronic countermeasures, the proposed algorithm has high reliability.

参考文献

[1] 张昀普, 单甘霖. 面向空中目标威胁评估的多传感器管理方法[J].航空学报, 2019, 40(11):323218. ZHANG Y P, SHAN G L. Multi-sensor management approach for aerial target threat assessment[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(11):323218(in Chinese)
[2] 高晓光, 李飞, 万开方. 数据丢包环境下的多传感器协同跟踪策略研究[J].系统工程与电子技术, 2018, 40(11):2450-2458. GAO X G, LI F, WAN K F. Research on multi-sensor cooperative tracking strategy in data packet loss environment[J].Systems Engineering and Electronics, 2018, 40(11):2450-2458(in Chinese).
[3] 陈辉, 贺忠良, 连峰, 等. 多目标跟踪中基于目标威胁度评估的传感器控制方法研究[J].电子与信息学报, 2018, 40(12):2861-2867. CHEN H, HE Z L, LIAN F, et al. Threat assessment based sensor control for multi-target tracking[J].Journal of Electronics and Information Technology, 2018, 40(12):2861-2867(in Chinese)
[4] PANG C, SHAN G L, DUAN X S, et al. A multi-mode sensor management approach in the missions of target detecting and tracking[J].Electronics, 2019, 8(1):1-18.
[5] 闫涛, 韩崇昭, 张光华. 空中目标传感器管理方法综述[J].航空学报, 2018, 39(10):022209. YAN T, HAN C Z, ZHANG G H. An overview of sensor management approaches for aerial target[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(10):022209(in Chinese).
[6] MARTIN S. Risk-based sensor resource management for field of view constrained sensors[C]//Proceedings of IEEE International Conference on Information Fusion. Piscataway:IEEE Press, 2015:2041-2048.
[7] MARCOS E G, DOMINIQUE M, PHILIIPPE V, et al. A risk-based sensor management using random finite sets and POMDP[C]//Proceedings of IEEE International Conference on Information Fusion. Piscataway:IEEE Press, 2017:1588-1596.
[8] KATSILIERIS F, DRIESSEN H, YAROVOY A. Threat-based sensor management for target tracking[J].IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4):2772-2785.
[9] HOU J, JING Z R, YANG Y. Target tracking in standoff jammer using unscented kalman filter and particle filter with negative information[J].Journal of Shanghai Jiaotong University (Science), 2014, 19(2):181-189.
[10] ZHENG Y M, SHI Z G, LU R X, et al. An efficient data-driven particle PHD filter for multitarget tracking[J].IEEE Transactions on Industrial Informatics, 2013, 9(4):2318-2326.
[11] GOSTAR A K, HOSEINNEZHAD R, BAB H A. Multi-bernoulli sensor-selection for multi-target tracking with unknown clutter and detection profiles[J].Signal Processing, 2016, 119:28-42.
[12] TIAN M C, BO Y M, CHEN Z M, et al. A new improved firefly clustering algorithm for SMC-PHD filter[J].Applied Soft Computing Journal, 2019, 85:105840.
[13] MAHLER R P S. Advances in statistical multisource multitarget information fusion[M]. Norwood:Artech House, 2014:825-860.
[14] WANG X Y, HOSEINNEZHAD R, GOSTAR A K, et al. Multi-sensor control for multi-object bayes filters[J].Signal Processing, 2018, 142:260-270.
[15] HOANG H G, VO B T. Sensor management for multi-target tracking via multi-bernoulli filtering[J].Automatica, 2014, 50(4):1135-1142.
[16] SI W J, WANG L W, QU Z Y. A Measurement-driven adaptive probability hypothesis density filter for multitarget tracking[J].Chinese Journal of Aeronautics, 2015, 28(6):1689-1698.
[17] 董鹏, 敬忠良, 雷明, 等. 基于关联的自适应新生目标强度CPHD滤波[J].系统工程与电子技术, 2016, 38(4):725-731. DONG P, JING Z L, LEI M, et al. Association based adaptive target birth intensity CPHD filter[J].Systems Engineering and Electronics, 2016, 38(4):725-731(in Chinese)
[18] BARTON D K. Radar system analysis and modeling[M]. Norwood:Artech House, 2005:387-388.
[19] 张睿文, 宋笔锋, 裴扬, 等. 基于ABMS的飞机拦截作战效能评估方法[J].系统工程与电子技术, 2018, 40(2):322-329. ZHANG R W, SONG B F, PEI Y, et al. Evaluation method for operational effectiveness of aircraft interception based on ABMS[J].Systems Engineering and Electronics, 2018, 40(2):322-329(in Chinese)
[20] RISTIC B, VO B N, CLARK D. A note on the reward function for PHD filters with sensor control[J].IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2):1521-1529.
[21] CLARK D E, BELL J. Multi-target state estimation and track continuity for the particle PHD filter[J].IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4):1441-1453.
[22] LIU W F, HAN C Z, LIAN F, et al. Multitarget state extraction for the PHD filter using MCMC approach[J].IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2):864-883.
[23] TOBIAS M, LANTERMAN A D. Techniques for birth-particle placement in the probability hypothesis density particle filter applied to passive radar[J].IET Radar, Sonar and Navigation, 2008, 2(5):351-365.
[24] LI T C, JUAN C M, SUN S D, et al. Multi-EAP:Extended EAP for multi-estimate extraction for SMC-PHD filter[J].Chinese Journal of Aeronautics, 2017, 30(1):368-379.
[25] CAI S, RAN X, WANG C. A targets prioritizing method based on clustering coefficient TSM[C]//International Conference on Advances in Materials, Machinery, Electrical Engineering, 2017:864-869.
[26] YANG X J, XING K Y, FENG X L. Maneuvering target tracking in dense clutter based on particle filtering[J].Chinese Journal of Aeronautics 2011, 24(2):171-180.
文章导航

/