为了实现航天器编队在日地L2点轨道的高精度相对导航,设计了一种分布式的自主导航方法。首先通过信息交互形成局部的测量构型,每颗卫星只基于邻居间的测量进行状态估计,降低了状态维数和计算量;然后根据相互估计的结果进行信息融合,提升估计的精度。在此基础上,对仿真结果进行了定量分析,给出了影响最终估计误差的主要因素测距精度、测量点间的基线与导航精度间的经验公式。在数值仿真中,所提方法达到了厘米量级定位精度和毫米每秒的测速精度。仿真结果表明:该方法有效,且对工程应用具有一定的参考价值。
In order to achieve high precision relative navigation of spacecraft formation in solar L2 orbit, a distributed autonomous navigation method is proposed in this paper. Firstly, the local measurement topology is formed by information interaction such that each satellite only estimates the states based on the measurement between neighbors, thereby reducing the states dimension and calculation amount. Then, the information fusion is conducted according to the results of mutual estimation to improve the estimation accuracy. On this basis, the main factors affecting the final estimation error are analyzed, and the approximation formula is proposed. Numerical simulation shows the accuracy can achieve cm order of position estimation and mm/s order of velocity estimation. The simulation results verify the effectiveness of the method and prove that the method can be applied in engineering.
[1] FARQUHAR R W, DUNHAM D W, GUO Y, et al. Utilization of libration points for human exploration in the Sun-Earth-Moon system and beyond[J]. Acta Astronautica, 2004, 55(3-9):687-700.
[2] YI Q, ANTON R. Transfers to lunar libration point orbits[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 74:180-200.
[3] FRIDLUND M, HENNING T. Towards other Earths:DARWIN/TPF and the search for extrasolar terrestrial planets[C]//ESA SP-539, 2003.
[4] OLIVER P L, STEFAN R M, SARAH L H. Planet-finding performance of the TPF-I Emma architecture[J]. Proceedings of SPIE, 2007, 6693:1-9.
[5] YUN X, BACHMANN E R, MCGHEE R B, et al. Testing and evaluation of an integrated GPS/INS system for small AUV navigation[J]. IEEE Journal of Oceanic Engineering, 1999, 24(3):396-404.
[6] LEE J Y, KIM H S, CHOI K H, et al. Adaptive GPS/INS integration for relative navigation[J]. GPS Solutions, 2016, 20(1):63-75.
[7] SKOG I. GNSS-aided INS for land vehicle positioning and navigation[D]. Stockholm:KTH Royal Institute of Technology, 2007.
[8] KIM S G, CRASSIDIS J L, CHENG Y, et al. Kalman filtering for relative spacecraft attitude and position estimation[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(1):133-143.
[9] ALONSO R, CRASSIDIS J, JUNKINS J. Vision-based relative navigation for formation flying of spacecraft[C]//Paperaiaa of the AIAA GNC Conference & Exhibit,2013.
[10] WU S, KUANG D. Positioning with autonomous formation flyer (AFF) on space-technology 3[C]//Proceedings of the Institute of Navigation ION GPS-99 Conference, 1999.
[11] PURCELL G, KUANG D, LICHTEN S, et al. Autonomous formation flyer (AFF) sensor technology development[C]//21 st Annual AAS Guidance and Control Conference, 1998, 45(4):1-21.
[12] MCLOUGHLIN T, CAMPBELL M. Hybrid leader follower and sensor scheduling for large spacecraft networks[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2004.
[13] AUNG M, PURCELL G, TIEN J, et al. Autonomous formation-flying sensor for the StarLight mission[J]. Interplanetary Network Progress Report, 2002, 42(152):1-15.
[14] WANG X C, ZHAO K C, YOU Z. Coordinated motion control of distributed spacecraft with relative state estimation[J]. Journal of Aerospace Engineering, 2016, 29(3):04015068.
[15] WANG X C, SUN T, SUN C H, et al. Distributed networked localization using neighboring distances only through a computational topology control approach[J]. International Journal of Distributed Sensor Networks, 2020, 16(3):1-10.
[16] WANG X C, SUN T, FAN C S. Neighborhood Kalman estimation for distributed localization in wireless sensor networks[J]. Mathematical Problems in Engineering, 2016, 2016(FEB.):1-8.
[17] FERGUSON P, HOW J. Decentralized estimation algorithms for formation flying spacecraft[C]//AIAA Guidance, Navigation, and Control Conference, 2003.
[18] WU Y, CAO X, XUE D. Autonomous relative navigation for formation flying satellites[C]//Systems and Control in Aerospace and Astronautics, 2006.
[19] GOMEZ G, LLIBRE J, MARTINEZ R, et al. Dynamics and mission design near libration points[M]. Singapore:World Scientific, 2001:305-379.
[20] SARKKA S. On unscented Kalman filtering for state estimation of continuous-time nonlinear systems[J]. IEEE Transactions on Automatic Control, 2007, 52(9):1631-1641.