飞行器在大迎角飞行状态下其复杂绕流流动会导致非指令运动出现,严重影响了飞行器的操纵性与飞行安全。现有以惯性元件为核心的机载设备无法直接提供非定常气动力参数,而如何实时感知飞行器大迎角状态的非定常气动力/力矩,是抑制非指令运动现象的核心所在,将是未来战机设计中亟待解决的空气动力学和飞行控制的关键问题之一。针对上述问题,提出基于翼面压力信息获取特征截面滚转力矩系数Clsec,估算飞行器全机在大迎角状态下的非定常气动力矩,进而判断飞行器的滚转运动的设想。风洞和飞行试验研究结果表明:对于80°/48°双三角翼,0.8c特征截面滚转力矩系数Clsec与模型滚转力矩存在相关性;在飞行器进行大迎角平飞动作时,非指令滚转运动下的滚转力矩系数Clsec大幅增加;Clsec能够比惯性传感器提前预测模型的滚转运动趋势,可为飞行器大迎角状态的非指令运动抑制提供一定数据依据。
The complex flow around the aircraft at high Angle of Attack (AOA) will lead to uncommanded motions, seriously damaging the maneuverability and flight safety of the aircraft. Since the existing airborne equipment with inertial core components is unable to provide unsteady aerodynamic parameters, real-time perception of the unsteady aerodynamic force/moment of aircraft at high AOA, which is the core of restraining uncommanded motions, will be one of the key problems in aerodynamics and flight control in the future advanced aircraft design. To solve these problems, this paper proposes a new method to estimate the unsteady aerodynamic moment of the whole aircraft at high AOA based on the distributed pressure to obtain the rolling moment coefficient Clsec of the characteristic section, and then to judge the rolling motion of the aircraft. The results of wind tunnel and flight experiments show that for the 80°/48° double delta wing, the 0.8c characteristic cross section Clsec has a correlation with the rolling moment of the model; when the aircraft is flying at high AOA, the rolling moment coefficient Clsec increases considerably; Clsec can predict the rolling motion trend of the model ahead of time compared with the inertial sensor, thus providing valuable data foundation for the suppression of uncommanded motions at high AOA.
[1] 邓学蓥, 竹军, 王延奎, 等. 高机动飞行器非指令运动及其控制的研究进展[J]. 力学与实践, 2012, 34(3):1-8. DENG X Y, ZHU J, WANG Y K, et al. The progress of studies of uncommanded motion and its suppression of flying vehicle with high manueverability[J]. Mechanics in Engineering, 2012, 34(3):1-8(in Chinese).
[2] NELSON R C, PELLETIER A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Sciences, 2003, 39(2-3):185-248.
[3] HALL R, WOODSON S. Introduction to the abrupt wing stall program[J]. Journal of Aircraft, 2004, 41(3):425-435.
[4] HALL R M, WOODSON S H, CHAMBERS J R. Overview of the abrupt wing stall program[J]. Progress in Aerospace Sciences, 2004, 40(7):417-452.
[5] HALL R M, WOODSON S H, CHAMBERS J R. Accomplishments of the abrupt-wing-stall program[J]. Journal of Aircraft,2005, 42(3):653-660.
[6] OWENS B, BRANDON J, CROOM M, et al. Overview of dynamic test techniques for flight dynamics research at NASA LaRC[C]//AIAA Aerodynamic Measurement Technology & Ground Testing Conference. Reston:AIAA, 2006.
[7] WANG B, DENG X Y, MA B F, et al. Effects of tip perturbation and wing locations on rolling oscillation induced by forebody vortices[J]. Acta Mechanica Sinica, 2010, 26(5):787-791.
[8] MA B F, HUANG Y, DENG X Y. Dynamic responses of asymmetric vortices over slender bodies to a rotating tip perturbation[J]. Experiments in Fluids, 2016, 57(4):54.
[9] MA B F, WANG B, DENG X Y. Effects of Reynolds numbers on wing rock induced by forebody vortices[J]. AIAA Journal, 2017, 55(9):2980-2991.
[10] MOHAMED A, WATKINS S, FISHER A, et al. Bioinspired wing-surface pressure sensing for attitude control of micro air vehicles[J]. Journal of Aircraft, 2015, 52(3):827-838.
[11] MOHAMED A, MASSEY K, WATKINS S, et al. The attitude control of fixed-wing MAVS in turbulent environments[J]. Progress in Aerospace Sciences, 2014, 66:37-48.
[12] BURELLE L A, YANG W, RIVAL D E. From sparse pressure measurements to prediction of instantaneous loads:A test case on delta wings in axial and transverse gusts[C]//AIAA Scitech 2020 Forum. Reston:AIAA, 2020.
[13] THOMPSON K, XU Y, DICKINSON B T. Aerodynamic moment model calibration from distributed pressure arrays[J]. Journal of Aircraft, 2017,54(2):716-723.
[14] LE PROVOST M, HE X, WILLIAMS D R. Real-time roll and pitching moment identification with distributed surface pressure sensors on a ucas wing[C]//2018 AIAA Aerospace Sciences Meeting. Reston:AIAA. 2018.
[15] 陈尹. 基于大气数据传感器的飞行器绕流感知技术实验研究[D]. 南京:南京航空航天大学, 2020. CHEN Y. Experimental research of flow perception around aircrafts technology based on air data sensors[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2020(in Chinese).
[16] 孙之骏. 流向涡与物面相互作用规律及其在流动控制中的应用[D]. 南京:南京航空航天大学, 2020. SUN Z J. Streamwise vortex-surface interaction and its application in flow control[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2020(in Chinese).
[17] 顾蕴松, 史楠星, 孙之骏, 等. 一种基于飞行状态感知的智能飞行器:中国:202020140981.0[P]. 2020-01-01. GU Y S, SHI N X, SUN Z J, et al. An intelligent vehicle based on flight state perception:China:202020140981.0[P]. 2020-01-01(in Chinese).
[18] 唐敏中, 王铁, 张伟, 等. 低速三角翼滚摆试验研究[J]. 空气动力学学报, 1997, 15(4):436-443. TANG M Z, WANG T, ZHANG W, et al. Low speed experimental investigation on wing rock[J]. Acta Aerodynamic Sinica, 1997, 15(4):436-443(in Chinese).
[19] ARENA A S, NELSON R C. Experimental investigations on limit cycle wing rock of slender wings[J]. Journal of Aircraft, 1994, 31(5):1148-1155.
[20] BOER R G D, CUNNINGHAM A M. Low-speed unsteady aerodynamics of a pitching straked wing at high incidence-part I:Test program[J]. Journal of Aircraft, 1990, 27(1):23-30.
[21] VERHAAGEN N G. Effects of Reynolds number on flow over 76/40-degree double-delta wings[J]. Journal of Aircraft, 2002, 39(6):1045-1052.
[22] 冯亚南, 郑波, 权少平. 双三角翼大迎角翼面压强分布与涡态相关分析[J]. 北京航空航天大学学报, 1998(2):181-184. FENG Y N, ZHENG B, QIAN S P. Correlative analysis between pressure distributions and vortex pattern of double delta wings at high angles of attack[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998(2):181-184(in Chinese).
[23] 阎超, 桂永丰, 黄贤禄, 等. 双三角翼前缘剖面形状对涡运动的影响[J]. 航空学报, 2001, 22(3):193-197. YAN C, GUI Y F, HUANG X L, et al. Numerical investigations of the effects of different leading edge profiles on the vortex flows over double-delta wings[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(3):193-197(in Chinese).
[24] 孙海生, 姜裕标, 刘志涛, 等. 80°/65°双三角翼模型大迎角气动特性风洞实验研究[J]. 实验流体力学, 2011, 25(6):6-12. SUN H S, JIANG Y B, LIU Z T, et al. Experimental research on the high angle of attack aerodynamic characteristics of an 80°/65°double delta wing[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6):6-12(in Chinese).