论文

单向CFRP螺旋铣削力建模

  • 万敏 ,
  • 杜宇轩 ,
  • 张卫红 ,
  • 杨昀
展开
  • 西北工业大学 机电学院, 西安 710072

收稿日期: 2020-04-24

  修回日期: 2020-05-09

  网络出版日期: 2020-06-12

基金资助

国家自然科学基金(51675440,51705427)

Cutting force modeling in helical milling process of unidirectional CFRP

  • WAN Min ,
  • DU Yuxuan ,
  • ZHANG Weihong ,
  • YANG Yun
Expand
  • School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2020-04-24

  Revised date: 2020-05-09

  Online published: 2020-06-12

Supported by

National Natural Science Foundation of China(51675440,51705427)

摘要

螺旋铣削加工工艺具有降低轴向力,改善排屑、散热条件等优点,螺旋铣削力是其重要过程指标之一。对单向CFRP螺旋铣削力建模方法展开研究,预测给定加工参数下的螺旋铣削力。首先,通过对螺旋铣削过程进行运动学分析和切屑几何分析,建立了螺旋铣削过程中侧刃、底刃动态切屑层模型,纤维切削方向角度模型和动态切削力计算模型。然后,分别通过侧刃直线槽铣实验和底刃半齿插铣实验,对各个切削方向角度下侧刃、底刃切削力系数进行了标定,并利用人工神经网络对切削力系数进行拟合。最后,将标定所得的切削力系数代入动态切削力计算模型中,建立了单向CFRP螺旋铣削过程动态切削力预测模型,并通过实验验证了模型的准确性。与现有模型相比,该模型不仅能够预测刀具螺旋运动周期内的切削力变化情况,还可以对每个刀具自转周期内的细节进行预测,通过考虑纤维切削方向角度对切削力系数的影响,反映了单向CFRP材料的各向异性,较为准确地预测了螺旋铣削力。

本文引用格式

万敏 , 杜宇轩 , 张卫红 , 杨昀 . 单向CFRP螺旋铣削力建模[J]. 航空学报, 2021 , 42(10) : 524134 -524134 . DOI: 10.7527/S1000-6893.2020.24134

Abstract

The helical milling process has the advantages of reducing the axial force and improving the chip removal and heat dissipation conditions. One of the important process indicators is the helical milling force. In this paper, the modeling method of unidirectional CFRP helical milling force is studied to predict the helical milling force with given machining parameters. First of all, through kinematics analysis and chip geometry analysis of the helical milling process, the side edge and bottom edge dynamic chip thickness models, the fiber cutting direction angle model, and the dynamic cutting force calculation model of the process are established. The cutting force coefficients are then calibrated through the linear groove milling experiment and the bottom edge half-teeth gear milling experiment, respectively, and fitted by the artificial neural network. Finally, the calibrated cutting force coefficients are introduced into the dynamic cutting force prediction model, thereby establishing the unidirectional CFRP helical milling dynamic cutting force prediction model. The accuracy of this model is subsequently verified through the experiment. Compared with the existing model, this model can predict both the change of the cutting force in the spiral motion cycle and the details of each tool rotation cycle. Considering the influence of the fiber cutting direction angle on the cutting force coefficient, it reflects the anisotropy of the unidirectional CFRP material, therefore more accurately predicting the spiral milling force.

参考文献

[1] WANG G D, MELLY S K, LI N, et al. Research on milling strategies to reduce delamination damage during machining of holes in CFRP/Ti stack[J]. Composite Structures, 2018, 200:679-688.
[2] GEIER N, SZALAY T. Optimisation of process parameters for the orbital and conventional drilling of uni-directional carbon fibre-reinforced polymers (UD-CFRP)[J]. Measurement, 2017, 110:319-334.
[3] VOSS R, HENERICHS M, KUSTER F. Comparison of conventional drilling and orbital drilling in machining carbon fibre reinforced plastics (CFRP)[J]. CIRP Annals, 2016, 65(1):137-140.
[4] WANG H Y, QIN X D, LI H. Machinability analysis on helical milling of carbon fiber reinforced polymer[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2015, 9(5):JAMDSM0057.
[5] LIU H T, LIN J, SUN Y Z, et al. Micro model of carbon fiber/cyanate ester composites and analysis of machining damage mechanism[J]. Chinese Journal of Mechanical Engineering, 2019, 32:52.
[6] AN Q L, CAI C Y, CAI X J, et al. Experimental investigation on the cutting mechanism and surface generation in orthogonal cutting of UD-CFRP laminates[J]. Composite Structures, 2019, 230:111441.
[7] QI Z C, ZHANG K F, CHENG H, et al. Microscopic mechanism based force prediction in orthogonal cutting of unidirectional CFRP[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(5-8):1209-1219.
[8] BHATNAGAR N, RAMAKRISHNAN N, NAIK N K, et al. On the machining of fiber reinforced plastic (FRP) composite laminates[J]. International Journal of Machine Tools and Manufacture, 1995, 35(5):701-716.
[9] SU F, YUAN J T, SUN F J, et al. Modeling and simulation of milling forces in milling plain woven carbon fiber-reinforced plastics[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(9-12):4141-4152.
[10] 王福吉, 朱浩杰, 宿友亮, 等. 基于层合叠加理论的CFRP多向层合板铣削力建模[J]. 中南大学学报(自然科学版), 2017, 48(9):2352-2362. WANG F J, ZHU H J, SU Y L, et al. Modeling about milling force for multidirectional CFRP based on theory of superposition[J]. Journal of Central South University (Science and Technology), 2017, 48(9):2352-2362(in Chinese).
[11] KARPAT Y, BAHTIYAR O, DEǦER B. Mechanistic force modeling for milling of unidirectional carbon fiber reinforced polymer laminates[J]. International Journal of Machine Tools and Manufacture, 2012, 56:79-93.
[12] 万敏, 李少恩, 原恒, 等. CFRP铣削力建模研究[J]. 南京航空航天大学学报, 2019, 51(3):272-280. WAN M,LI S E,YUAN H, et al. Cutting force modeling in milling of CFRP[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(3):272-280(in Chinese).
[13] SHEIKH-AHMAD J, TWOMEY J, KALLA D, et al. Multiple regression and committee neural network force prediction models in milling frp[J]. Machining Science and Technology, 2007, 11(3):391-412.
[14] DENKENA B, BOEHNKE D, DEGE J H. Helical milling of CFRP-titanium layer compounds[J]. CIRP Journal of Manufacturing Science and Technology, 2008, 1(2):64-69.
[15] TIAN Y L, LIU Y P, WANG F J, et al. Modeling and analyses of helical milling process[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1-4):1003-1022.
[16] WANG H Y, QIN X D, REN C Z, et al. Prediction of cutting forces in helical milling process[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(9-12):849-859.
[17] WANG H Y, QIN X D, LI H, et al. Analysis of cutting forces in helical milling of carbon fiber-reinforced plastics[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2013, 227(1):62-74.
[18] WANG H Y, QIN X D. A mechanistic model for cutting force in helical milling of carbon fiber-reinforced polymers[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(9-12):1485-1494.
[19] 刘刚, 张恒, 王亚飞, 等. 碳纤维增强复合材料螺旋铣孔切削力及加工质量研究[J]. 复合材料学报, 2014, 31(5):1292-1299. LIU G, ZHANG H, WANG Y F, et al. Study on cutting force and machining quality of orbital drilling for CFRP[J]. Acta Materiae Compositae Sinica, 2014, 31(5):1292-1299(in Chinese).
[20] 刘刚, 陈祖朋, 高凯晔, 等. 基于机器人载体的螺旋铣制孔精度研究[J]. 应用基础与工程科学学报, 2015, 23(5):1047-1058. LIU G, CHEN Z P, GAO K Y, et al. Borehole accuracy study on A robotic orbital drilling system[J]. Journal of Basic Science and Engineering, 2015, 23(5):1047-1058(in Chinese).
[21] 高航, 孙超, 冉冲, 等. 叠层复合材料超声振动辅助螺旋铣削制孔工艺的试验研究[J]. 兵工学报, 2015, 36(12):2342-2349. GAO H, SUN C, RAN C, et al. Drilling experiment of laminated composites by ultrasonic vibration assisted helical milling method[J]. Acta Armamentarii, 2015, 36(12):2342-2349(in Chinese).
[22] LI S P, QIN X D, JIN Y, et al. A comparative study of hole-making performance by coated and uncoated WC/Co cutters in helical milling of Ti/CFRP stacks[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(5-8):2645-2658.
[23] CHENG X, ZHANG X, TIAN Y B, et al. Study on micro helical milling of small holes with flat end mills[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(5-8):3119-3128.
[24] WANG Q, WU Y B, BITOU T R, et al. Proposal of a tilted helical milling technique for high quality hole drilling of CFRP:Kinetic analysis of hole formation and material removal[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9-12):4221-4235.
[25] ZOU Y H, CHEN G, LU L P, et al. Kinematic view of cutting mechanism in hole-making process of longitude-torsional ultrasonic assisted helical milling[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1-4):267-280.
[26] CHEN G, REN C Z, ZOU Y H, et al. Mechanism for material removal in ultrasonic vibration helical milling of Ti6Al4V alloy[J]. International Journal of Machine Tools and Manufacture, 2019, 138:1-13.
文章导航

/