先进制造技术与装备专栏

面向航空智能制造的DT与AI融合应用

  • 隋少春 ,
  • 许艾明 ,
  • 黎小华 ,
  • 刘顺涛 ,
  • 黄伟
展开
  • 航空工业成都飞机工业(集团)有限责任公司, 成都 610091

收稿日期: 2020-04-30

  修回日期: 2020-05-04

  网络出版日期: 2020-06-04

Fusion application of DT and AI for aviation intelligent manufacturing

  • SUI Shaochun ,
  • XU Aiming ,
  • LI Xiaohua ,
  • LIU Shuntao ,
  • HUANG Wei
Expand
  • AVIC Chengdu Aircraft Industrial(Group) Co., Ltd., Chengdu 610091, China

Received date: 2020-04-30

  Revised date: 2020-05-04

  Online published: 2020-06-04

摘要

针对航空装备复杂制造场景下制造过程管控维度多尺度大、制造资源组成复杂性高、质量问题跟踪定位难度大等问题,结合数字孪生(DT)与人工智能(AI)技术特点,开展了面向航空智能制造的DT与AI融合应用研究。基于数字孪生与人工智能应用现状,系统性地阐述了数字孪生与人工智能融合机理,分析了支撑数字孪生与人工智能融合驱动航空智能制造的关键技术和数字孪生与人工智能融合驱动的AI控制中心构建涉及的关键问题,在此基础上重点讨论了加工制造过程自适应控制、智能车间生产过程智能管控、制造过程资源调度与优化决策、产品智能质量控制等应用场景,为数字孪生与人工智能在航空智能制造融合应用提供参考。

本文引用格式

隋少春 , 许艾明 , 黎小华 , 刘顺涛 , 黄伟 . 面向航空智能制造的DT与AI融合应用[J]. 航空学报, 2020 , 41(7) : 624173 -624173 . DOI: 10.7527/S1000-6893.2020.24173

Abstract

Aiming at the problems of multi-dimensional and multi-scale manufacturing process management and control, high complexity of manufacturing resources composition, and difficulty in tracking and locating quality problems in complex manufacturing scenarios of aviation equipment, combined with the technical characteristics of Digital Twin (DT) and Artificial Intelligence (AI), the research on the fusion application of DT and AI for aviation intelligent manufacturing is carried out. Based on the application status of digital twin and artificial intelligence, this paper systematically expounded the fusion mechanism of digital twin and artificial intelligence, analyzed the key technologies that support the fusion of digital twin and artificial intelligence to drive the aviation intelligent manufacturing and the key issues involved in the construction of AI control center driven by the fusion of digital twin and artificial intelligence. On this basis, the application scenarios such as adaptive control of manufacturing process, intelligent control of production process in intelligent workshop, resource scheduling and optimization decision-making in manufacturing process, and product intelligent quality control are discussed, which could provide reference for the fusion of digital twin and artificial intelligence in aviation intelligent manufacturing.

参考文献

[1] 沈洪才. 航空工业数字工程转型与智能制造[J]. 国防科技工业, 2018, 220(10):36. SHEN H C. Digital engineering transformation and intelligent manufacturing in AVIC[J]. Defence Science & Technology Industry, 2018, 220(10):36(in Chinese).
[2] 余志强, 陈嵩, 孙炜, 等. 基于MBD的三维数模在飞机制造过程中的应用[J]. 航空制造技术, 2009(25):82-85. YU Z Q, CHEN S, SUN W, et al. Application of MBD-based three-dimensional module in aircraft manufacturing[J]. Aeronautical Manufacturing Technology, 2009(25):82-85(in Chinese).
[3] 隋少春, 牟文平, 龚清洪, 等. 数字化车间及航空智能制造实践[J]. 航空制造技术, 2017(7):46-50. SUI S C, MU W P, GONG Q H, et al. Digital workshop and intelligent manufacturing practices[J]. Aeronautical Manufacturing Technology, 2017(7):46-50(in Chinese).
[4] 陶飞, 张萌, 程江峰, 等. 数字孪生车间——一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23(1):1-9. TAO F, ZHANG M, CHENG J F, et al. Digital twin workshop:A new paradigm for future workshop[J]. Computer Integrated Manufacturing Systems, 2017, 23(1):1-9(in Chinese).
[5] 张曙. 工业4.0和智能制造[J]. 机械设计与制造工程, 2014(8):1-5. ZHANG S. The industry 4.0 and intelligent manufacturing[J]. Machine Design and Manufacturing Engineering, 2014(8):1-5(in Chinese).
[6] 杨林瑶, 陈思远, 王晓, 等. 数字孪生与平行系统:发展现状、对比及展望[J]. 自动化学报, 2019, 45(11):2001-2031. YANG L Y, CHEN S Y, WANG X, et al. Digital twins and parallel systems:State of the art, comparisons and prospect[J]. Acta Automatica Sinica, 2019, 45(11):2001-2031(in Chinese).
[7] 孙其博, 刘杰, 黎羴, 等. 物联网:概念、架构与关键技术研究综述[J]. 北京邮电大学学报, 2010, 33(3):1-9. SUN Q B, LIU J, LI S, et al. Internet of things:Summarize on concepts, architecture and key technology problem[J]. Journal of Beijing University of Posts and Telecommunications, 2010, 33(3):1-9(in Chinese).
[8] 李国杰, 程学旗. 大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J]. 中国科学院院刊, 2012, 27(6):647-657. LI G J, CHENG X Q. Research status and scientific thinking of big data[J]. Bulletin of the Chinese Academy of Sciences, 2012, 27(6):647-657(in Chinese).
[9] LIGEZA A. Artificial intelligence:A modern approach[J]. Neurocomputing, 1995, 9(2):215-218.
[10] 余晓晖, 刘默, 蒋昕昊, 等. 工业互联网体系架构2.0[J]. 计算机集成制造系统, 2019, 25(12):2983-2996. YU X H, LIU M, JIANG X H, et al. Industrial internet architecture 2.0[J]. Computer Integrated Manufacturing Systems, 2019, 25(12):2983-2996(in Chinese).
[11] ADAM J A. Virtual reality is for real[J]. IEEE Spectrum, 1993, 30(10):22-29.
[12] RYDLINGER A. Augmented reality[J]. The Journal of Ocean Technology, 2015, 10(2):92-93.
[13] 陶剑, 戴永长, 魏冉. 基于数字线索和数字孪生的生产生命周期研究[J]. 航空制造技术, 2017, 60(21):26-31. TAO J, DAI Y C, WEI R. Study on production lifecycle based on digital thread and digital twin[J]. Aeronautical Manufacturing Technology, 2017, 60(21):26-31(in Chinese).
[14] SHAFTO M, CONROY M, DOYLE R, et al. Modeling, simulation, information technology & processing roadmap[C]//National Aeronautics and Space Administration, 2010:5-7.
[15] 孟松鹤, 叶雨玫, 杨强, 等. 数字孪生及其在航空航天中的应用[J/OL].[2020-04-28],航空学报,http://kns.cnki.net/kcms/detail/11.1929.V.20200316.0946.006.html. MENG S H, YE Y M, YANG Q, et al. Digital twin and its aerospace applications[J/OL].[2020-04-28]. Acta Aeronautica et Astronautica Sinica, http://kns.cnki.net/kcms/detail/11.1929.V.20200316.0946.006.html (in Chinese).
[16] 李浩, 陶飞, 王昊琪, 等. 基于数字孪生的复杂产品设计制造一体化开发框架与关键技术[J]. 计算机集成制造系统, 2019, 25(6):1320-1336. LI H, TAO F, WANG H Q, et al. Integration framework and key technologies of complex product design-manufacturing based on digital twin[J]. Computer Integrated Manufacturing Systems, 2019, 25(6):1320-1336(in Chinese).
[17] 刘丹, 黄海涛, 王保兴, 等. 基于数字孪生的再制造车间作业模式[J]. 计算机集成制造系统, 2019, 25(6):1515-1527. LIU D, HUANG H T, WANG B X, et al. Operation paradigm for remanufacturing shop-floor based on digital twin[J]. Computer Integrated Manufacturing Systems, 2019, 25(6):1515-1527(in Chinese).
[18] 赵阳, 伏晓露, 廖庆妙, 等. 基于数字孪生的智能脉动管控[J]. 航空制造技术, 2020, 63(Z1):14-20. ZHAO Y, FU X L, LIAO Q M, et al. Intelligent production management and control for aircraft assembly pulsation line based on digital twin[J]. Aeronautical Manufacturing Technology, 2020, 63(Z1):14-20(in Chinese).
[19] 刘蔚然, 陶飞, 程江峰, 等. 数字孪生卫星:概念、关键技术及应用[J]. 计算机集成制造系统, 2020, 26(3):565-588. LIU W R, TAO F, CHENG J F, et al. Digital twin satellite:Concept, key technologies and applications[J]. Computer Integrated Manufacturing Systems, 2020, 26(3):565-588(in Chinese).
[20] 向峰, 黄圆圆, 张智, 等.基于数字孪生的产品生命周期绿色制造新模式[J].计算机集成制造系统, 2019, 25(6):1505-1514. XIANG F, HUANG Y Y, ZHANG Z, et al. New paradigm of green manufacturing for product life cycle based on digital twin[J]. Computer Integrated Manufacturing Systems, 2019, 25(6):1505-1514(in Chinese).
[21] 丁凯, 张旭东, 周光辉, 等. 基于数字孪生的多维多尺度智能制造空间及其建模方法[J]. 计算机集成制造系统, 2019, 25(6):1491-1504. DING K, ZHANG X D, ZHOU G H, et al. Digital twin-based multi-dimensional and multi-scale modeling of smart manufacturing spaces[J]. Computer Integrated Manufacturing Systems, 2019, 25(6):1491-1504(in Chinese).
[22] 刘建伟, 刘媛, 罗雄麟. 深度学习研究进展[J]. 计算机应用研究, 2014, 31(7):1921-1930, 1942. LIU J W, LIU Y, LUO X L. Research and development on deep learning[J]. Application Research of Computers, 2014, 31(7):1921-1930, 1942(in Chinese).
[23] KHOTANZAD A, HONG Y H. Invariant image recognition by Zernike moments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(5):489-497.
[24] 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1):1-18. TAO F, LIU W R, LIU J H, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1):1-18(in Chinese).
文章导航

/