固体力学与飞行器总体设计

考虑不确定性的复合材料加筋壁板后屈曲分析模型验证方法

  • 王彬文 ,
  • 艾森 ,
  • 张国凡 ,
  • 聂小华 ,
  • 吴存利
展开
  • 中国飞机强度研究所, 西安 710065

收稿日期: 2020-03-19

  修回日期: 2020-03-26

  网络出版日期: 2020-05-11

基金资助

工信部民机科研项目(MJ-2015-F-027)

Validation method for post-buckling analysis model of stiffened composite panels considering uncertainties

  • WANG Binwen ,
  • AI Sen ,
  • ZHANG Guofan ,
  • NIE Xiaohua ,
  • WU Cunli
Expand
  • Aircraft Strength Research Institute of China, Xi'an 710065, China

Received date: 2020-03-19

  Revised date: 2020-03-26

  Online published: 2020-05-11

Supported by

Civil Aircraft Scientific Research Project(MJ-2015-F-027)

摘要

复合材料加筋壁板在结构轻量化设计中,由于材料组分、几何尺寸具有不确定性,导致了壁板结构在服役条件下承载特性的不确定性。针对上述问题,提出了一种考虑参数不确定性的复合材料加筋壁板后屈曲模型验证方法。首先基于正交试验设计方法进行了不确定性参数的显著性分析,然后采用Kriging模型构建了能够表征后屈曲特性的代理模型,利用蒙特卡洛随机模拟获得加筋壁板后屈曲载荷概率分布,最后通过壁板结构在典型承载条件下的力学实验数据验证了分析模型的准确性。该分析方法对于壁板件在实际工程中的应用具有一定指导意义。

本文引用格式

王彬文 , 艾森 , 张国凡 , 聂小华 , 吴存利 . 考虑不确定性的复合材料加筋壁板后屈曲分析模型验证方法[J]. 航空学报, 2020 , 41(8) : 223987 -223987 . DOI: 10.7527/S1000-6893.2020.23987

Abstract

In the lightweight structural design of stiffened composite panels, uncertainties in the geometric and material parameters lead to the uncertainty of ultimate load carrying capacity. Therefore, it is necessary to consider these uncertainties in model validation. A method to validate the post-buckling finite element model of stiffened composite panels considering the uncertain factors is proposed. Based on the orthogonal experimental design, the significance analysis of the uncertainty parameters was first carried out to obtain significance parameters, followed by the acquisition of a surrogate model by the Kriging model to represent the post-buckling characteristics. The probability distribution of the post-buckling loads for the stiffened composite panel was achieved by Monte Carlo simulations, and the accuracy of the post-buckling model verified by experimental data. This validation approach can be applied to similar engineering cases.

参考文献

[1] 张国凡,段世慧,吴存利.基于有限元的加筋板结构后屈曲分析方法研究[J].强度与环境,2013,40(2):43-50. ZHANG G F, DUAN S H, WU C L. Method research for post-buckling analysis of stiffened structure base on FEM[J]. Structure & Environment Engineering,2013,40(2):43-50(in Chinese).
[2] 汪厚冰,林国伟,韩雪冰,等.复合材料帽形加筋登板剪切屈曲性能[J].航空学报,2019,40(8):222889. WANG H B, LIN G W,HAN X B,et al. Shear buckling performance of composite hat-stiffened panels[J].Acta Aeronautica et Astronautica Sinica,2019,40(8):222889(in Chinese).
[3] 解江,冯振宇,赵彦强,等.含随机不确定参数复合材料薄壁结构吸能特性评估方法研究[J].振动与冲击,2015,34(22):109-114. XIE J, FENG Z Y, ZHAO Y Q, et al. Evaluation method based on probability for energy-absorbing composite structures with uncertain parameters[J]. Journal of Vibration and Shock, 2015,34(22):109-114(in Chinese).
[4] BEN H, THACKER T L P.A simple probabilistic validation metric for the comparison of uncertain model and test results[C]//The 16th AIAA Non-Deterministic Approaches Conference.Reston:AIAA,2014.
[5] CHRISTOPHER J R, WILLIAM L O. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing[J].Computer Methods in Applied Mechanics and Engineering, 2011,200(2011):2131-2144.
[6] LEE M C W, DONALD W K, RICHARD D, et al. A study on the robustness of two stiffened composite fuselage panels[J].Composite Structures, 2010, 92:223-232.
[7] 李湘郡,李彦斌,郭飞,等.C/C复合材料的压缩强度分布与可靠性评估[J].航空学报,2019,40(8):222853. LI X J, LI Y B, GUO F,et al. Compression strength distribution and reliability assessment of C/C composites[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):222853(in Chinese).
[8] LI S Z, EDWIN R, KRISTOF M, et al. Vibration-based estimation of axial force for a beam member with uncertain boundary conditions[J]. Journal of Sound and Vibration, 2013,332:795-806.
[9] ISAAC E, CLÉMENT S. Remedy to overestimation of classical interval analysis:Analysis of beams with uncertain boundary conditions[J]. Shock and Vibration, 2012,20(2012):143156.
[10] MARC P M, CHRISTIAN S, JAVIER A. Nonparametric stochastic modeling of structures with uncertain boundary conditions/coupling between substructures[J]. AIAA Journal,2013,51(6):1296-1308.
[11] DANIEL C K, SONNY N. Propagation of uncertainty in test-analysis correlation of substructured spacecraft[J]. Journal of Sound and Vibration, 2011,330:1211-1224.
[12] 李维.基于不确定性分析与模型验证的计算模型可信性研究[D].西安:西北工业大学,2015. LI W. Credibility of computational mode based on uncertainty analyses and model verification[D]. Xi'an:Northwestern Polytechnical University, 2015(in Chinese).
[13] 聂小华,吴存利.考虑不确定性因素的有限元屈曲模型验证[J].力学与实践,2017,39(5):460-467. NIE X H, WU C L. Validation and confirmation of static finite element model by considering uncertainties[J]. Mechanics in Engineering,2017,39(5):460-467(in Chinese).
[14] 陈学前,肖世富,刘信恩.不确定性因素结构的有限元建模与确认[J].噪声与振动控制,2013,33(5):26-29. CHEN X Q, XIAO S F, LIU X E. Finite element modeling and validating of structural uncertainty factors[J]. Noise and Vibration Control, 2013,33(5):26-29(in Chinese).
[15] 陈学前,肖世富,刘信恩,等.根部柔性梁的不确定性建模与确认[J].力学与实践,2012,34(1):52-56. CHEN X Q, XIAO S F, LIU X E, et al. The uncertain modeling and validation for a cantileverwith flexible root[J]. Mechanics in Engineering, 2012,34(1):52-56(in Chinese).
[16] 张冬冬, 郭勤涛. Kriging响应面代理模型在有限元模型确认中的应用[J].振动与冲击,2013,32(9):187-191. ZHANG D D, GUO Q T. Application of Kriging response surface in finite element model validation[J]. Journal of Vibration and Shock, 2013,32(9):187-191(in Chinese).
[17] 郑宗勇. 复杂联接结构非线性有限元精确建模和模型确认方法研究[D]. 南京:南京航空航天大学,2010. ZHENG Z Y. Study on nonlinear finite element precise modeling and model validation methods of complex joint structures[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
[18] 张保强. 热结构不确定性动力学仿真及模型确认方法研究[D].南京:南京航空航天大学,2012. ZHANG B Q. Uncertainty simulation of thermal structural dynamics and model validation method research[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
[19] 赵亮,杨战平.考虑认知不确定性的模型确认贝叶斯因子法[J].计算机应用研究,2016,33(2):473-477. ZHAO L, YANG Z P. Bayer factor for model validation under epistemic uncertainty[J]. Application Research of Computers, 2016,33(2):473-477(in Chinese).
[20] 刘伯权,刘喜,吴涛.基于共轭先验分布的深受弯构件受剪承载力概率模型分析[J].工程力学,2015,32(4):169-177. LIU B Q, LIU X, WU T. Probabilistic shear strength model for deep flexural members based on conjugate prior distribution[J]. Engineering Mechanics, 2015,32(4):169-177(in Chinese).
[21] 韩芳,钟冬望,汪君.基于贝叶斯法的复杂有限元模型修正研究[J].振动与冲击,2012,31(1):39-43. HAN F, ZHONG D W, WANG J. Complicated finite element model updating based on Bayesian method[J]. Journal of Vibration and Shock, 2012, 31(1):39-43(in Chinese).
[22] 王岩,隋思涟.试验设计与MATLAB数据分析[M].北京:清华大学出版社,2012:153-203. WANG Y, SUI S L. Experimental design and MATLAB data analysis[M]. Beijing:Tsinghua University Press,2012:153-203(in Chinese).
[23] 郑建强,向锦武,罗漳平,等.民机机身下部结构耐撞性优化设计[J].航空学报,2012,33(4):640-648. ZHENG J Q, XIANG J W, LUO Z P,et al. Crashworthiness optimization of civil aircraft subfloor structure[J]. Acta Aeronautica et Astronautica Sinica, 2012,33(4):640-648(in Chinese).
[24] 关德新. 某型飞机平尾壁板选型试验研究[R].西安:中国飞机强度研究所,2009. GUAN D X. Research on the style-selection test of a aircraft horizontal tail panel[R]. Xi'an:Aircraft Strength Research Institute of China,2009(in Chinese).
文章导航

/