材料工程与机械制造

高温铝合金电磁超声检测回波特性及因素分析

  • 石文泽 ,
  • 陈巍巍 ,
  • 卢超 ,
  • 程进杰 ,
  • 陈尧
展开
  • 1. 南昌航空大学 无损检测技术教育部重点实验室, 南昌 330063;
    2. 赣南师范大学 江西省数值模拟与仿真技术重点实验室, 赣州 341000;
    3. 中国科学院 声学研究所 声场声信息国家重点实验室, 北京 100190

收稿日期: 2020-01-25

  修回日期: 2020-02-24

  网络出版日期: 2020-04-03

基金资助

国家自然科学基金(51705231,51705232);江西省自然科学基金(20192ACBL20052,2018BAB216020);江西省科技创新平台(20192BCD40028);南昌航空大学研究生创新专项资金项目(校级项目)(YC2019-S345);声场声信息国家重点实验室开放课题(SKLA201912);江西省教育厅科技项目(GJJ170613)

Characteristics and factor analyses for electromagnetic ultrasonic detection echoes in high-temperature aluminum alloy

  • SHI Wenze ,
  • CHEN Weiwei ,
  • LU Chao ,
  • CHENG Jinjie ,
  • CHEN Yao
Expand
  • 1. Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China;
    2. Key Laboratory of Simulation and Numerical Modeling Technology of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China;
    3. State Key Laboratory of Acoustic Field and Acoustic Information, Academy of Acoustics, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2020-01-25

  Revised date: 2020-02-24

  Online published: 2020-04-03

Supported by

National Natural Science Foundation of China (51705231, 51705232);Natural Science Foundation of Jiangxi Province (20192ACBL20052, 2018BAB216020);Science and Technology Innovation Platform of Jiangxi Province (20192BCD40028);Graduate Innovation Fund Project of Nanchang Hangkong University (YC2019-S345);Open Project of State Key Laboratory of Sound Field Acoustic Information (SKLA201912);Science and Technology Project of Jiangxi Provincial Department of Education (GJJ170613)

摘要

针对高温铝合金在线检测条件下,温度对铝合金电磁超声检测回波特性的影响规律尚不明确、高温检测时缺陷定量/定位补偿困难这一难题,以螺旋线圈电磁超声换能器(EMAT)为例,建立了高温铝合金EMAT检测过程的场路耦合有限元模型;研究了温度对EMAT激励/接收换能效率、EMAT激励/接收电路的功率分配特性、超声传播过程中的扩散/介质衰减特性、回波幅值和超声声速等因素的影响规律;研制了耐高温EMAT探头,对20~500℃高温铝合金试样进行了检测实验,并测定了高温铝合金的超声介质衰减系数和超声声速。在仿真和实验相结合的基础上,分析了高温检测时超声回波幅值变化特性及其影响因素。结果表明:对于铝合金这类非铁磁性金属材料,导致高温时超声回波幅值下降的主要原因是超声介质衰减系数随着温度的升高而增大,其次为高温时EMAT激励/接收电路的功率分配特性的改变。在激励EMAT在试样表面形成的洛伦兹力不变的条件下,其所激励的超声波回波幅值具有随着温度的增加而增加的特点,可以有效减缓超声回波幅值下降的趋势。

本文引用格式

石文泽 , 陈巍巍 , 卢超 , 程进杰 , 陈尧 . 高温铝合金电磁超声检测回波特性及因素分析[J]. 航空学报, 2020 , 41(12) : 423854 -423854 . DOI: 10.7527/S1000-6893.2020.23854

Abstract

To solve the uncertainty problem of the effect of temperature on the amplitude of ultrasonic echoes from an Electromagnetic Acoustic Transducer (EMAT) testing with aluminum alloys, and to overcome the difficulty in compensation for defect sizing and location evaluation at an elevated temperature, a field-circuit coupling finite element model is built for the detection process of a spiral coil EMAT operated in the aluminum alloy. Based on this model, the effects of temperature on the excitation and detection efficiency of the EMAT, power allocation characteristics of the equivalent transmitting and receiving circuits for the EMAT, and the diffusion/medium attenuation, echo amplitude, and ultrasonic wave velocity are analyzed. Subsequently, a high-temperature EMAT probe is designed and applied to an aluminum block with temperature ranging from 25 ℃ to 500 ℃. The medium attenuation coefficient and velocity of ultrasonic waves at elevated temperature are also measured. Based on the simulation and experimental results, affecting factors and characteristics of ultrasonic echoes in high temperature testing are examined. Results indicate that, for those non-ferromagnetic metal materials such as aluminum alloys, the main reason leading to the decrease in the amplitude of ultrasonic echoes is attenuation of the ultrasonic medium which increases with temperature rise. The second reason is the variation of power allocation characteristics for the EMAT excitation and detection circuit at elevated temperature. When the Lorentz force on the surface of high temperature sample produced by the transmitting EMAT is constant, the amplitude of excited ultrasonic waves increases with temperature rise. The increasing amplitude of the shear wave can compensate for the downward trend of ultrasonic echo amplitude.

参考文献

[1] 张俊苗, 聂宏, 薛彩军, 等. 铝合金焊接接头预腐蚀强度特性及预测[J]. 航空学报, 2013, 34(9):2161-2168. ZHANG J M, NIE H, XUE C J, et al. Properties and prediction of pre-corrosion strength of aluminum alloy welded joints[J]. Acta Aeronautica et Astronautica Sinics, 2013, 34(9):2161-2168(in Chinese).
[2] 吴代斌, 孙永恒, 刘润广, 等. 几种仿制的铝合金锻造工艺[J]. 航空学报, 1992, 13(11):703-705. WU D B, SUN Y H, LIU R G, et al. Forging technology of some imitative aluminium alloy[J]. Acta Aeronautica et Astronautica Sinica, 1992, 13(11):703-705(in Chinese).
[3] KOJIMA F. Inverse problem for internal temperature distribution of metal products using pulser-receiver EMAT[J]. International Journal of Applied Electromagnetics and Mechanics, 2019, 59(4):1451-1457.
[4] BOYD D M, DRONEY B D, SPERLINE P D, et al. In-plant demonstration of high-temperature EMAT system on continuous caster strand[C]//THOMPSON D O, CHIMENTI D E. Review of Progress in Quantitative Nondestructive Evaluation. 1988:1091-1097.
[5] 周正干, 冯占英, 高翌飞, 等. 超声导波在大型薄铝板缺陷检测中的应用[J]. 航空学报, 2008, 29(4):1044-1048. ZHOU Z G, FENG Z Y, GAO Y F, et al. Application of ultrasonic waves to defect inspection of large thin plate[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):1044-1048(in Chinese).
[6] 刘松平, 李乐刚, 刘菲菲, 等. 大厚度扩散焊NLU成像检测技术[J]. 航空制造技术, 2017(5):34-37. LIU S P, LI L G, LIU F F, et al. Evaluation of thick diffusion bonds by using NLU imaging method[J]. Aeronautical Manufacturing Technology, 2017(5):34-37(in Chinese).
[7] 马保全, 周正干. 航空航天复合材料结构非接触无损检测技术的进展及发展趋势[J]. 航空学报, 2014, 35(7):1787-1803. MA B Q, ZHOU Z G. Progress and development trends of composite structure evaluation using noncontact nondestructive testing techniques in aviation and aerospace industries[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1787-1803(in Chinese).
[8] 焦敬品, 李海平, 翟顺成, 等. 基于压缩感知的金属加筋板兰姆波健康监测技术[J]. 航空学报, 2019, 40(7):422695. JIAO J P, LI H P, ZHAI S C, et al. Lamb waves health monitoring technology for metal stiffened plate based on compressive sensing[J]. Acta Aeronautica et Astronautica Sinics, 2019, 40(7):422695(in Chinese).
[9] KOGIA M, GAN T, BALACHANDRAN W, et al. High temperature shear horizontal electromagnetic acoustic transducer for guided wave inspection[J]. Sensors, 2016, 16(4):582-598.
[10] KOGIA M, CHENG L, MOHIMI A, et al. Electromagnetic acoustic transducers applied to high temperature plates for potential use in the solar thermal industry[J]. Applied Sciences-Basel, 2015, 5(4):1715-1734.
[11] 何存富, 邓鹏, 吕炎, 等. 一种高信噪比电磁声表面波传感器及在厚壁管道检测中的应用[J]. 机械工程学报, 2017,53(4):59-66. HE C F, DENG P, LV Y, et al. A new surface wave EMAT with high SNR and the application for defect detection in thick-walled pipes[J]. Journal of Mechanical Engineering, 2017, 53(4):59-66(in Chinese).
[12] COLE P T. The generation and reception of ultra-sonic surface waves in mild steel at high temperatures[J]. Ultrasonics, 1978, 16(4):151-155.
[13] LEE S S, AHN B Y. EMAT application at high temperature[J]. Nondestructive Testing and Evaluation, 1992, 7(1):253-261.
[14] URAYAMA R, UCHIMOTO T, TAKAGI T. Application of EMAT/EC dual probe to monitoring of wall thinning in high temperature environment[J]. International Journal of Applied Electromagnetics and Mechanics, 2010, 33(3-4):1317-1327.
[15] HERNANDEZ-VALLE F, DIXON S. Initial tests for de-signing a high temperature EMAT with pulsed electromagnet[J]. NDT & E International, 2010, 43(2):171-175.
[16] LUNN N, DIXON S, POTTER M D G. High temperature EMAT design for scanning or fixed point operation on magnetite coated steel[J]. NDT & E International, 2017, 89:74-80.
[17] 徐鸿, 王冰. 高温管道超声导波监测的基础研究[J]. 声学技术, 2009, 28(5):610-614. XU H, WANG B. Basic study of high temperature pipes inspection using ultrasonic guided waves[J]. Technical Acoustics, 2009, 28(5):610-614(in Chinese).
[18] 刘会彬, 郑阳, 王锋淮, 等. 温度对奥氏体不锈钢材料电磁超声检测的影响研究[J]. 测试技术学报, 2018, 32(4):329-334. LIU H B, ZHENG Y, WANG F H, et al. Effect of temperature on electromagnetic acoustic transducer inspecting of austenitic stainless steel[J]. Journal of Test and Measurement Technology, 2018, 32(4):329-334(in Chinese).
[19] 邱佳明. 用于高温管道测厚的脉冲电磁铁电磁超声换能器研究[D]. 哈尔滨:哈尔滨工业大学, 2018:58-60. QIU J M. Design of pulsed electromagnet EMAT using for high temperature pipeline thickness gauging[D]. Harbin:Harbin Institute of Technology, 2018:58-60(in Chinese).
[20] WU Y X, HAN L, GONG H, et al. A modified model for simulating the effect of temperature on ultrasonic attenuation in 7050 aluminum alloy[J]. AIP Advances, 2018, 8(8):85003-11-85003-13.
[21] REN W, XU K, DIXON S, et al. A study of magne-tostriction mechanism of EMAT on low-carbon steel at high temperature[J]. NDT & E International, 2019, 101:34-43.
[22] 魏东, 石友安, 胡斌, 等. 电磁超声法测量结构内部温度场的试验研究[J]. 机械工程学报, 2019, 55(6):93-99. WEI D, SHI Y A, HU B, et al. Experimental study on sensing the internal temperature distributions of structures by electromagnetic ultrasonic[J]. Journal of Mechanical Engineering, 2019, 55(6):93-99(in Chinese).
[23] JIAN X, DIXON S, EDWARDS R S, et al. Coupling mechanism of an EMAT[J]. Ultrasonics, 2006, 441:e653-e656.
[24] OGI H, HIRAO M, HONDA T. Ultrasonic attenuation and grain-size evaluation using electromagnetic acoustic resonance[J]. The Journal of the Acoustical Society of America, 1995, 98(1):458-464.
[25] PANDEY D K, YADAV R R. Temperature dependent ultrasonic properties of aluminium nitride[J]. Applied Acoustics, 2008, 70(3):412-415.
[26] DUTTON B, BOONSANG S, DEWHURST R J. A new magnetic configuration for a small in-plane electromagnetic acoustic transducer applied to laser-ultrasound measurements:Modelling and validation[J]. Sensors and Actuators A:Physical, 2006, 125(2):249-259.
[27] JAFARI-SHAPOORABADI R, KONRAD A, SINCLAIRE A N. Comparison of three formulations for eddy-current and skin effect problems[J]. IEEE Transactions on Magnetics, 2002, 38(2):617-620.
[28] YI P, ZHANG K, LI Y, et al. Influence of the lift-off effect on the cut-off frequency of the EMAT-generated Rayleigh wave signal[J]. Sensors, 2014, 14(10):19687-19699.
[29] SHAPOORABADI R J, KONRAD A, SINCLAIR A N. Computation of current densities in the receiving mode of electromagnetic acoustic transducers[J]. Journal of Applied Physics, 2005, 97(10):10Q106-1-10Q106-3.
[30] SHI W Z, WU Y X, GONG H, et al. Optimal design of spiral coil electromagnetic acoustic transducers considering lift-off sensitivity operating on non-ferromagnetic media[J]. Nondestructive Testing and Evaluation, 2018, 33(1):56-74.
[31] SHI W Z, WU Y X, GONG H, et al. Enhancement of lift-off performance and conversion efficiency using a copper backplate for a spiral coil EMAT in generating and receiving shear waves[J]. International Journal of Applied Electromagnetics and Mechanics, 2018, 56(2):173-194.
[32] HIRAO M, OGI H. EMATs for science and industry non-contacting ultrasonic measurements[M]. Boston:Kluwer Academic Publisher, 2003:73-80.
[33] MICHAEL B, ERIC W, DAVID R, et al. Handbook of optics:properties of metals[M]. New York:McGraw-Hill Inc, 1995.
[34] CHEN Y, RIPPE C M, ALLEN B, et al. Overview of aluminum alloy mechanical properties during and after fires[J]. Fire Science Reviews, 2015, 3-4:1-36.
文章导航

/