[1] FERRI A, CLARKE J H. On the use of interfering flow fields for the reduction of drag[J]. Journal of the Aeronautical Sciences, 1957, 24(1):1-18.
[2] FERRI A, CLARKE J H, TING L. Favorable interference in lifting systems in supersonic flow[J]. Journal of the Aeronautical Sciences, 1957, 24(11):791-804.
[3] BUSEMANN A. Aerodynamic lift at supersonic speeds[C]//The 5th Volta Aerodynamic Conference, 1935.
[4] ROSSOW V J. A theoretical study of the lifting efficiency at supersonic speeds of wings utilizing indirect lift induced by vertical surfaces:NACA RM A55L08[R]. Washington, D.C.:NASA, 1956.
[5] 吴子牛, 白晨媛, 李娟,等. 高超声速飞行器流动特征分析[J]. 航空学报, 2015, 36(1):58-85. WU Z N, BAI C Y, LI J, et al. Analysis of flow characteristics for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):58-85(in Chinese).
[6] TAN H. The aerodynamics of supersonic biplanes of finite span:WADC Technical report 52-276[R]. 1950.
[7] SEARS W R, TAN H. The aerodynamics of supersonic biplanes[J]. Quarterly of Applied Mathematics, 1951, 9(1):67-76.
[8] CHEN C F, CLARKE J H. Body under lifting wing[J]. Journal of the Aerospace Sciences, 1951, 28(7):547-562.
[9] FRIEDMAN M D. Arrangement of bodies of revolution to reduce the wave drag at supersonic speeds:NACA RM A51I20[R]. Washington, D.C.:NACA, 1951.
[10] EGGERS A J, SYVERTSON C A. Aircraft configurations developing high lift-drag ratios at high supersonic speeds:NACA RM A55L05[R]. Washington, D.C.:NACA, 1956.
[11] MORRIS O. Aerodynamic characteristics in pitch of several ringwing-body configurations at a mach number of 2.2:NASA TN D-1272[R]. Washington, D.C.:NASA, 1962.
[12] MYSLIWETZ F. Supersonic interference lift[J]. AIAA Journal, 1963, 1(6):1432-1434.
[13] BOYD J A. Optimal utilization of supersonic favorable interference to obtain high lift-drag ratios:AIAA-1965-0752[R]. Reston:AIAA, 1965.
[14] ROE P L. Some exact calculations of the lift and drag produced by a wedge in supersonic flow, either directly or by interference:Minstry of Aviation R&M 3478[R]. 1967.
[15] SIGALLA A, HALLSTAFF T H. Aerodynamics of powerplant installation on supersonic aircraft[J]. Journal of Aircraft, 1967, 4(4):273-277.
[16] MORRIS O A, LAMB M. Aerodynamic characteristics in pitch of a modified half ring wing body combination and a swept wing body combination at Mach 2.16 to 3.70:NASA TM X-1551[R]. Washington, D.C.:NASA, 1968.
[17] MORRIS O A, MACK R J. Aerodynamic characteristics of a parasol-wing-body combination utilizing favorable lift interference at Mach numbers from 3.00 to 4.63:NASA TN D-4855[R]. Washington, D.C.:NASA, 1968.
[18] 黄志澄. 论超声速流动中的有益干扰[J]. 空气动力学学报, 1992, 10(4):499-505. HUANG Z C. On the favorable interference in the supersonic flow[J]. Acta Aerodynamica Sinica, 1992, 10(4):499-505(in Chinese).
[19] KULFAN R M. Application of hypersonic favorable aerodynamic interference concepts to supersonic aircraft:AIAA-1978-1458[R]. Reston:AIAA, 1978.
[20] KREIGER R J, GREGOIRE J E, HOOD R F. Unconstrained supersonic cruise and maneuvering configuration concepts:AIAA-1979-0220[R]. Reston:AIAA, 1979.
[21] HOOD R F, KREIGER R J, GREGOIRE J E. The impact of constraints on advanced supersonic cruise and maneuvering missile concepts:AIAA-1980-0257[R]. Reston:AIAA,1980.
[22] HUNT J L, JOHNSTON P J, CUBBAGE J M, et al. Hypersonic airbreathing missile concepts under study at NASA Langley Research Center:AIAA-1982-0316[R]. Reston:AIAA, 1982.
[23] SPEARMAN M L. Unconventional missile concepts from consideration of varied mission requirements:AIAA-1984-0076[R]. Reston:AIAA, 1984.
[24] BUSHNELL D. Supersonic aircraft drag reduction:AIAA-1990-1596[R]. Reston:AIAA,1990.
[25] PRITULO T M, GUBANOV A A, VOEVODENKO N V. Favorable interference of optimized wing-body combination with inlet at supersonic speed:AIAA-1995-3946[R]. Reston:AIAA,1995.
[26] KUSUNOSE K, MATSUSHIMA K, GOTO Y, et al. A fundamental study for the development of boomless supersonic transport aircraft:AIAA-2006-0654[R]. Reston:AIAA, 2006.
[27] KUSUNOSE K, MATSUSHIMA K, MARUYAMA D. Supersonic biplane-A review[J]. Progress in Aerospace Sciences, 2011, 47(1):53-87.
[28] YAMAZAKI W, KUSUNOSE K. Biplane-wing/twin-body-fuselage configuration for innovative supersonic transport[J]. Journal of Aircraft, 2014, 51(6):1942-1952.
[29] 华如豪, 叶正寅. 基于Busemann双翼构型的超音速导弹减阻技术研究[J]. 应用力学学报, 2012, 29(5):535-540. HUA R H, YE Z Y. Drag reduction method for supersonic missile based on Busemann biplane concept[J]. Chinese Journal of Applied Mechanics, 2012, 29(5):535-540(in Chinese).
[30] 王昆仑,王正平. 布泽曼双翼及其壅塞问题研究[J]. 航空计算技术, 2013, 43(4):76-78. WANG K L, WANG Z P. Research on Busemann biplane airfoil and its choked flow problem[J]. Aeronautical Computing Technique, 2013, 43(4):76-78(in Chinese).
[31] 李占科, 张翔宇, 冯晓强, 等. 超声速双层翼翼型的阻力特性研究[J]. 应用力学学报, 2014, 31(4):483-488. LI Z K, ZHANG X Y, FENG X Q, et al. The study on the drag characteristic of supersonic biplane[J]. Chinese Journal of Applied Mechanics, 2014, 31(4):483-488(in Chinese).
[32] 朱宝柱, 武洁, 李伟杰, 等. Busemann双翼流动壅塞及减阻数值模拟[J]. 现代应用物理, 2014, 5(4):303-309. ZHU B Z, WU J, LI W J, et al. Numerical simulation of busemann biplane choked flow and drag reduction[J]. Modern Applie Physics, 2014, 5(4):303-309(in Chinese).
[33] 赵承熙, 叶正寅, 华如豪. 新型目标压力分布下的Licher双翼反设计方法研究[J]. 空气动力学学报, 2015, 33(5):610-616. ZHAO C X, YE Z Y, HUA R H. Inverse design method for the Licher biplane with a new target pressure distribution[J]. Acta Aerodynamica Sinica, 2015, 33(5):610-616(in Chinese).
[34] 刘姝含, 朱战霞. 高超声速可变形双翼气动特性[J]. 航空学报, 2017, 38(9):233-243. LIU S H, ZHU Z X. Aerodynamic characteristics of hypersonic morphing biplane[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):233-243(in Chinese).
[35] 刘姝含, 朱战霞. 基于Busemann双翼的三维高超声速机翼研究[J]. 航空学报, 2018, 39(6):121405. LIU S H, ZHU Z X. Research on three dimensional hypersonic wing based on Busemann biplane[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):121405(in Chinese).
[36] LYU Y C, JIANG C W, GAO Z X, et al. Passive waverider method and its validation:AIAA-2014-4346[R]. Reston:AIAA, 2014.
[37] HU S Y, JIANG C W, GAO Z X, et al. Design of periodic cruise vehicle based on the passive waverider method:AIAA-2015-4546[R]. Reston:AIAA, 2015.
[38] 崔凯, 李广利, 胡守超, 等. 高速飞行器高压捕获翼气动布局概念研究[J]. 中国科学:物理学,力学, 天文学, 2013, 43(5):652-661. CUI K, LI G L, HU S C, et al. Conceptual studies of the high pressure zone capture wing configuration for high speed air vehicles[J]. Scientia Sinica:Physics, Mechanics and Astronomica, 2013, 43(5):652-661(in Chinese).
[39] 李广利, 崔凯, 胡守超, 等. 乘波体组合高压捕获翼构型的性能分析[J]. 计算机辅助工程, 2014, 23(4):53-56. LI G L, CUI K, HU S C, et al. Performance analysis on configuration combined by waverider and high pressure zone capture wing[J]. Computer Aided Engineering, 2014, 23(4):53-56(in Chinese).
[40] 李广利, 崔凯, 肖尧, 等. 高压捕获翼位置设计方法研究[J]. 力学学报, 2016, 48(3):576-584. LI G L, CUI K, XIAO Y, et al. The design method research for the position of high pressure capturing wing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3):576-584(in Chinese).
[41] 李广利, 崔凯, 肖尧, 等. 高压捕获翼前缘型线优化和分析[J]. 力学学报, 2016, 48(4):877-885. LI G L, CUI K, XIAO Y, et al. Leading edge optimization and parameter analysis of high pressure capturing wings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4):877-885(in Chinese).
[42] CUI K, XIAO Y, XU Y Z, et al. Hypersonic I-shaped aerodynamic configurations[J]. Science China:Physics, Mechanics and Astronomy, 2018, 61(2):024722.
[43] XU Y Z, XU Z Q, LI S G, et al. A hypersonic lift mechanism with decoupled lift and drag surfaces[J]. Science China:Physics, Mechanics and Astronomy, 2013, 56(5):981-988.