综述

基于超声速有益干扰原理的气动构型概念综述

  • 刘荣健 ,
  • 白鹏
展开
  • 中国航天空气动力技术研究院, 北京 100074

收稿日期: 2019-12-30

  修回日期: 2020-02-10

  网络出版日期: 2020-03-26

Concept of aerodynamic configuration based on supersonic favorable interference principle: Review

  • LIU Rongjian ,
  • BAI Peng
Expand
  • China Academy of Aerospace Aerodynamics, Beijing 100074, China

Received date: 2019-12-30

  Revised date: 2020-02-10

  Online published: 2020-03-26

摘要

超声速有益干扰气动设计概念于20世纪30年代提出,其基本思想是利用飞行器部件间的波系干扰获得诸如增升或减阻等性能收益。此概念在20世纪50~60年代得到了大量探索并部分实现了工程应用,在20世纪70年代至世纪末陷入沉寂。近年来,随着超声速运输机和高超声速飞行器技术的复兴,超声速有益干扰概念重新得到重视并有望得到工程应用。本文梳理了超声速有益干扰气动设计概念的发展历史,总结了应用超声速有益干扰原理的典型构型,如超声速双翼机、Flat-top构型、环翼和半环翼构型、伞翼构型、高压捕获翼构型等,并对典型构型的基本原理和气动特点进行了分析。对超声速有益干扰设计概念的未来进行了展望,概述了亟待研究的相关问题。

本文引用格式

刘荣健 , 白鹏 . 基于超声速有益干扰原理的气动构型概念综述[J]. 航空学报, 2020 , 41(9) : 23784 -023784 . DOI: 10.7527/S1000-6893.2020.23784

Abstract

Proposed in the 1930s, the concept of supersonic favorable interference aerodynamic design basically meant to obtain performance gains such as lift increase or drag reduction by using wave disturbance interference between aircraft components. Explored extensively in the 1950s and 1960s, and partially implemented in engineering applications, it fell into silence from the 1970s to the end of the 20th century. Recently, with the revival of supersonic transport and hypersonic vehicle technology, the concept of supersonic favorable interference has been re-emphasized and is expected to be applied to engineering. This paper reviews the development of the concept of supersonic favorable interference aerodynamic design, summarizes the typical configurations adopting the principle of supersonic favorable interference such as supersonic biplanes, flat-top configurations, ring wings and half-ring wings, parasol wings, and high pressure capturing wings, and analyses the basic principles and aerodynamic characteristics of these typical configurations. The future development of the concept is proposed with a summary of related problems that need urgent attention.

参考文献

[1] FERRI A, CLARKE J H. On the use of interfering flow fields for the reduction of drag[J]. Journal of the Aeronautical Sciences, 1957, 24(1):1-18.
[2] FERRI A, CLARKE J H, TING L. Favorable interference in lifting systems in supersonic flow[J]. Journal of the Aeronautical Sciences, 1957, 24(11):791-804.
[3] BUSEMANN A. Aerodynamic lift at supersonic speeds[C]//The 5th Volta Aerodynamic Conference, 1935.
[4] ROSSOW V J. A theoretical study of the lifting efficiency at supersonic speeds of wings utilizing indirect lift induced by vertical surfaces:NACA RM A55L08[R]. Washington, D.C.:NASA, 1956.
[5] 吴子牛, 白晨媛, 李娟,等. 高超声速飞行器流动特征分析[J]. 航空学报, 2015, 36(1):58-85. WU Z N, BAI C Y, LI J, et al. Analysis of flow characteristics for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):58-85(in Chinese).
[6] TAN H. The aerodynamics of supersonic biplanes of finite span:WADC Technical report 52-276[R]. 1950.
[7] SEARS W R, TAN H. The aerodynamics of supersonic biplanes[J]. Quarterly of Applied Mathematics, 1951, 9(1):67-76.
[8] CHEN C F, CLARKE J H. Body under lifting wing[J]. Journal of the Aerospace Sciences, 1951, 28(7):547-562.
[9] FRIEDMAN M D. Arrangement of bodies of revolution to reduce the wave drag at supersonic speeds:NACA RM A51I20[R]. Washington, D.C.:NACA, 1951.
[10] EGGERS A J, SYVERTSON C A. Aircraft configurations developing high lift-drag ratios at high supersonic speeds:NACA RM A55L05[R]. Washington, D.C.:NACA, 1956.
[11] MORRIS O. Aerodynamic characteristics in pitch of several ringwing-body configurations at a mach number of 2.2:NASA TN D-1272[R]. Washington, D.C.:NASA, 1962.
[12] MYSLIWETZ F. Supersonic interference lift[J]. AIAA Journal, 1963, 1(6):1432-1434.
[13] BOYD J A. Optimal utilization of supersonic favorable interference to obtain high lift-drag ratios:AIAA-1965-0752[R]. Reston:AIAA, 1965.
[14] ROE P L. Some exact calculations of the lift and drag produced by a wedge in supersonic flow, either directly or by interference:Minstry of Aviation R&M 3478[R]. 1967.
[15] SIGALLA A, HALLSTAFF T H. Aerodynamics of powerplant installation on supersonic aircraft[J]. Journal of Aircraft, 1967, 4(4):273-277.
[16] MORRIS O A, LAMB M. Aerodynamic characteristics in pitch of a modified half ring wing body combination and a swept wing body combination at Mach 2.16 to 3.70:NASA TM X-1551[R]. Washington, D.C.:NASA, 1968.
[17] MORRIS O A, MACK R J. Aerodynamic characteristics of a parasol-wing-body combination utilizing favorable lift interference at Mach numbers from 3.00 to 4.63:NASA TN D-4855[R]. Washington, D.C.:NASA, 1968.
[18] 黄志澄. 论超声速流动中的有益干扰[J]. 空气动力学学报, 1992, 10(4):499-505. HUANG Z C. On the favorable interference in the supersonic flow[J]. Acta Aerodynamica Sinica, 1992, 10(4):499-505(in Chinese).
[19] KULFAN R M. Application of hypersonic favorable aerodynamic interference concepts to supersonic aircraft:AIAA-1978-1458[R]. Reston:AIAA, 1978.
[20] KREIGER R J, GREGOIRE J E, HOOD R F. Unconstrained supersonic cruise and maneuvering configuration concepts:AIAA-1979-0220[R]. Reston:AIAA, 1979.
[21] HOOD R F, KREIGER R J, GREGOIRE J E. The impact of constraints on advanced supersonic cruise and maneuvering missile concepts:AIAA-1980-0257[R]. Reston:AIAA,1980.
[22] HUNT J L, JOHNSTON P J, CUBBAGE J M, et al. Hypersonic airbreathing missile concepts under study at NASA Langley Research Center:AIAA-1982-0316[R]. Reston:AIAA, 1982.
[23] SPEARMAN M L. Unconventional missile concepts from consideration of varied mission requirements:AIAA-1984-0076[R]. Reston:AIAA, 1984.
[24] BUSHNELL D. Supersonic aircraft drag reduction:AIAA-1990-1596[R]. Reston:AIAA,1990.
[25] PRITULO T M, GUBANOV A A, VOEVODENKO N V. Favorable interference of optimized wing-body combination with inlet at supersonic speed:AIAA-1995-3946[R]. Reston:AIAA,1995.
[26] KUSUNOSE K, MATSUSHIMA K, GOTO Y, et al. A fundamental study for the development of boomless supersonic transport aircraft:AIAA-2006-0654[R]. Reston:AIAA, 2006.
[27] KUSUNOSE K, MATSUSHIMA K, MARUYAMA D. Supersonic biplane-A review[J]. Progress in Aerospace Sciences, 2011, 47(1):53-87.
[28] YAMAZAKI W, KUSUNOSE K. Biplane-wing/twin-body-fuselage configuration for innovative supersonic transport[J]. Journal of Aircraft, 2014, 51(6):1942-1952.
[29] 华如豪, 叶正寅. 基于Busemann双翼构型的超音速导弹减阻技术研究[J]. 应用力学学报, 2012, 29(5):535-540. HUA R H, YE Z Y. Drag reduction method for supersonic missile based on Busemann biplane concept[J]. Chinese Journal of Applied Mechanics, 2012, 29(5):535-540(in Chinese).
[30] 王昆仑,王正平. 布泽曼双翼及其壅塞问题研究[J]. 航空计算技术, 2013, 43(4):76-78. WANG K L, WANG Z P. Research on Busemann biplane airfoil and its choked flow problem[J]. Aeronautical Computing Technique, 2013, 43(4):76-78(in Chinese).
[31] 李占科, 张翔宇, 冯晓强, 等. 超声速双层翼翼型的阻力特性研究[J]. 应用力学学报, 2014, 31(4):483-488. LI Z K, ZHANG X Y, FENG X Q, et al. The study on the drag characteristic of supersonic biplane[J]. Chinese Journal of Applied Mechanics, 2014, 31(4):483-488(in Chinese).
[32] 朱宝柱, 武洁, 李伟杰, 等. Busemann双翼流动壅塞及减阻数值模拟[J]. 现代应用物理, 2014, 5(4):303-309. ZHU B Z, WU J, LI W J, et al. Numerical simulation of busemann biplane choked flow and drag reduction[J]. Modern Applie Physics, 2014, 5(4):303-309(in Chinese).
[33] 赵承熙, 叶正寅, 华如豪. 新型目标压力分布下的Licher双翼反设计方法研究[J]. 空气动力学学报, 2015, 33(5):610-616. ZHAO C X, YE Z Y, HUA R H. Inverse design method for the Licher biplane with a new target pressure distribution[J]. Acta Aerodynamica Sinica, 2015, 33(5):610-616(in Chinese).
[34] 刘姝含, 朱战霞. 高超声速可变形双翼气动特性[J]. 航空学报, 2017, 38(9):233-243. LIU S H, ZHU Z X. Aerodynamic characteristics of hypersonic morphing biplane[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):233-243(in Chinese).
[35] 刘姝含, 朱战霞. 基于Busemann双翼的三维高超声速机翼研究[J]. 航空学报, 2018, 39(6):121405. LIU S H, ZHU Z X. Research on three dimensional hypersonic wing based on Busemann biplane[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):121405(in Chinese).
[36] LYU Y C, JIANG C W, GAO Z X, et al. Passive waverider method and its validation:AIAA-2014-4346[R]. Reston:AIAA, 2014.
[37] HU S Y, JIANG C W, GAO Z X, et al. Design of periodic cruise vehicle based on the passive waverider method:AIAA-2015-4546[R]. Reston:AIAA, 2015.
[38] 崔凯, 李广利, 胡守超, 等. 高速飞行器高压捕获翼气动布局概念研究[J]. 中国科学:物理学,力学, 天文学, 2013, 43(5):652-661. CUI K, LI G L, HU S C, et al. Conceptual studies of the high pressure zone capture wing configuration for high speed air vehicles[J]. Scientia Sinica:Physics, Mechanics and Astronomica, 2013, 43(5):652-661(in Chinese).
[39] 李广利, 崔凯, 胡守超, 等. 乘波体组合高压捕获翼构型的性能分析[J]. 计算机辅助工程, 2014, 23(4):53-56. LI G L, CUI K, HU S C, et al. Performance analysis on configuration combined by waverider and high pressure zone capture wing[J]. Computer Aided Engineering, 2014, 23(4):53-56(in Chinese).
[40] 李广利, 崔凯, 肖尧, 等. 高压捕获翼位置设计方法研究[J]. 力学学报, 2016, 48(3):576-584. LI G L, CUI K, XIAO Y, et al. The design method research for the position of high pressure capturing wing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3):576-584(in Chinese).
[41] 李广利, 崔凯, 肖尧, 等. 高压捕获翼前缘型线优化和分析[J]. 力学学报, 2016, 48(4):877-885. LI G L, CUI K, XIAO Y, et al. Leading edge optimization and parameter analysis of high pressure capturing wings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4):877-885(in Chinese).
[42] CUI K, XIAO Y, XU Y Z, et al. Hypersonic I-shaped aerodynamic configurations[J]. Science China:Physics, Mechanics and Astronomy, 2018, 61(2):024722.
[43] XU Y Z, XU Z Q, LI S G, et al. A hypersonic lift mechanism with decoupled lift and drag surfaces[J]. Science China:Physics, Mechanics and Astronomy, 2013, 56(5):981-988.
文章导航

/