流体力学与飞行力学

大型结冰风洞云雾场适航应用符合性验证

  • 郭向东 ,
  • 张平涛 ,
  • 赵照 ,
  • 赖庆仁 ,
  • 郭龙
展开
  • 中国空气动力研究与发展中心 结冰与防除冰重点实验室, 绵阳 621000

收稿日期: 2020-02-18

  修回日期: 2020-03-23

  网络出版日期: 2020-03-20

基金资助

国家"973"计划(2015CB755800)

Airworthiness application compliance verification of cloud flowfield in large icing wind tunnel

  • GUO Xiangdong ,
  • ZHANG Pingtao ,
  • ZHAO Zhao ,
  • LAI Qingren ,
  • GUO Long
Expand
  • Key Laboratory of Icing and Anti/De-Icing, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2020-02-18

  Revised date: 2020-03-23

  Online published: 2020-03-20

Supported by

National Basic Research Program of China (2015CB755800)

摘要

结冰风洞云雾场符合性是大型结冰风洞适航应用的基础。为验证3 m×2 m结冰风洞云雾场符合性,发展了基于SAE ARP5905的结冰风洞云雾场符合性验证方法,针对主试验段构型,开展了结冰云雾场符合性验证试验,获得了试验段内液滴尺寸和液态水含量拟合关系,考察了喷嘴水压、液滴尺寸、试验段气流速度和喷嘴数量对试验段液态水含量的影响,形成了主试验段结冰云雾控制包线。结果表明:主试验段内液滴尺寸分布具有显著的单峰分布特征,体积中值直径(MVD)模拟范围近似在10~75 μm之间;试验段中心处液态水含量随着喷嘴水压和MVD的增大而增大,同时近似与试验段气流速度成反比,与喷嘴数量成正比;增大喷嘴水压和喷嘴数量会提高试验段内云雾液态水含量空间均匀性,但是增大气流速度却会减弱试验段内云雾空间均匀性;3 m×2 m结冰风洞主试验段结冰云雾控制包线可以覆盖大部分适航条例25部附录C结冰气象条件,但对低液态水含量结冰条件的模拟仍存在局限。

本文引用格式

郭向东 , 张平涛 , 赵照 , 赖庆仁 , 郭龙 . 大型结冰风洞云雾场适航应用符合性验证[J]. 航空学报, 2020 , 41(10) : 123879 -123879 . DOI: 10.7527/S1000-6893.2020.23879

Abstract

The compliance of the cloud flowfield of large icing wind tunnels is the foundation of their airworthiness application. To verify the compliance of the cloud flowfield of the 3 m×2 m icing wind tunnel, a verification method based on SAE ARP5905 is firstly developed, followed by a verification test on the main test section, from which the fitting relationships of droplet sizes and liquid water content are obtained. In addition, the effect of the nozzle water pressure, droplet sizes, test section velocity and nozzle number on the test section liquid water content are examined. Finally, the icing cloud operating envelop is built for the main test section. Results show that the distribution of droplet sizes is unimodal and the simulation range is approximately from 10 to 75 μm. Furthermore, the liquid water content in the center of the test section increases as the nozzle water pressure and Median Volume Diameter (MVD) increase, while approximately inversely proportional to the test section velocity and proportional to the nozzle number. Increased nozzle water pressure and nozzle number would enhance the spatial uniformity of the cloud liquid water content in the test section; however, increased test section velocity could reduce the spatial uniformity of the cloud. Moreover, although the icing cloud operating envelop of the 3 m×2 m icing wind tunnel for the main test section could cover most of the icing atmospheric conditions listed in Appendix C, Part 25 of FAR, limitations still exist for simulations under low liquid water content conditions.

参考文献

[1] 林贵平, 卜雪琴, 申晓斌, 等. 飞机结冰与防冰技术[M]. 北京:北京航空航天大学出版社,2016. LIN G P, BU X Q, SHEN X B, et al. Aircraft icing and anti-icing technology[M]. Beijing:Beihang University Press, 2016(in Chinese).
[2] 桂业伟,周志宏,李颖晖,等. 关于飞机结冰的多重安全边界问题[J].航空学报,2017,38(2):520723. GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(2):520723(in Chinese).
[3] 韩志熔,赵克良,颜巍. 格尼襟翼在冰风洞混合翼设计中的应用[J].航空学报,2019,40(2):522387. HAN Z R, ZHAO K L, YAN W. Application of Gumey flap in hybrid-wing design for icing wind tunnel[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(2):522387(in Chinese).
[4] Society of Automotive Engineers. Calibration and acceptance of icing wind tunnels:SAE ARP-5905[S]. Society of Automotive Engineers, 2015.
[5] IDE R F, OLDENBURG J R. Icing cloud calibration of the NASA Glenn icing research tunnel:NASA/TM-2001-210689[R].Washington, D. C.:NASA, 2001.
[6] IDE R F, SHELDON D W. 2006 icing cloud calibration of the NASA Glenn icing research tunnel:NASA/TM-2008-215177[R].Washington, D. C.:NASA, 2008.
[7] VAN ZANTE J F, IDE R F, STEEN L E. NASA Glenn icing research tunnel:2012 cloud calibration procedure and results[C]//4th AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2012.
[8] VAN ZANTE J F, IDE R F, STEEN L E. NASA Glenn icing research tunnel:2014 cloud calibration procedures and results:NASA/TM-2014-218392[R]. Washington, D.C.:NASA, 2014.
[9] KING-STEEN L E, IDE R F, VAN ZANTE J F, et al. NASA Glenn icing research tunnel:2014 and 2015 cloud calibration procedures and results:NASA/TM-2015-218758[R]. Washington, D. C.:NASA, 2015.
[10] ESPOSITO B M, RAGNI A, FERRIGNO F. Cloud calibration update of the CIRA icing wind tunnel:SAE 2003-01-2312[R]. 2003.
[11] BELLUCCI M, ESPOSITO B M, MARRAZZO M, et al. Calibration of the CIRA IWT in the low speed configuration[C]//45th AIAA Aerospace Science Meeting and Exhibit. Reston:AIAA, 2007.
[12] RAGNI A, ESPOSITO B, MARRAZZO M, et al. Calibration of the CIRA IWT in the high speed configuration[C]//43th AIAA Aerospace Science Meeting and Exhibit. Reston:AIAA, 2005.
[13] CHINTAMANI S, BELTER D L. Design features and flow qualities of the boeing research aerodynamic icing tunnel[C]//32nd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1994.
[14] IRANI E, AL-KHALIL K. Calibration and recent upgrades to the cox icing wind tunnel[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2008.
[15] HERMAN E. Goodrich icing wind tunnel overview, improvements and capabilities[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2006.
[16] OLESKIW M M, HYDE F H, PENNA P J. In-flight icing simulation capabilities of NRC's altitude icing wind tunnel[C]//39th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2001.
[17] 符澄,彭强,张海洋,等. 结冰风洞喷嘴雾化特性研究[J].实验流体力学,2015,29(2):32-36. FU C, PENG Q, ZHANG H Y, et al. The atomization characteristics research for spray nozzle of icing wind tunnel[J].Journal of Experiments in Fluid Mechanics, 2015, 29(2):32-36(in Chinese).
[18] 符澄,彭强,张海洋,等. 结冰风洞环境对喷嘴雾化特性的影响初步研究[J].实验流体力学,2015,29(3):30-34. FU C, PENG Q, ZHANG H Y, et al. Preliminary research on spray nozzle atomization characteristics in icing wind tunnel environment[J].Journal of Experiments in Fluid Mechanics, 2015, 29(3):30-34(in Chinese).
[19] 程尧,张平涛,郭向东,等. 机载式相位多普勒干涉仪在结冰风洞的应用[J].兵工自动化,2017, 36(9):55-57. CHENG Y, ZHANG P T, GUO X D. Application of PDI-FPDR in icing wind tunnel[J].Ordnance Industry Automation, 2017, 36(9):55-57(in Chinese).
[20] 郭龙,程尧,王梓旭. 结冰风洞试验段云雾粒径测量与控制实验研究[J].实验流体力学,2018,32(2):55-60. GUO L, CHENG Y, WANG Z X. Experimental study on droplet size measurement and control of icing cloud in icing wind tunnel[J].Journal of Experiments in Fluid Mechanics, 2018, 32(2):55-60(in Chinese).
[21] 赖庆仁,郭龙,李明,等. 结冰风洞液态水含量测量装置设计与实现[J].空气动力学学报, 2016, 34(6):750-755. LAI Q R, GUO L, LI M, et al. Design and implementation of the device for liquid water content measurement in icing wind tunnel[J].Acta Aerodynamica Sinica, 2016, 34(6):750-755(in Chinese).
[22] 王梓旭,沈浩,郭龙,等. 3 m×2 m结冰风洞云雾参数校测方法[J].实验流体力学,2018,32(2):61-67. WANG Z X, SHEN H, GUO L, et al. Cloud calibration method of 3 m×2 m icing wind tunnel[J].Journal of Experiments in Fluid Mechanics, 2018, 32(2):61-67(in Chinese).
[23] STRAPP J W, OLDENBURG J, IDE R, et al. Wind tunnel measurements of the response of hot-wire liquid water content instruments to large droplets[J].Journal of Atmospheric and Oceanic Technology, 2003, 20(6):791-806.
[24] COBER S, BERNSTEIN B, JECK R, et al. Data and analysis for the development of an engineering standard for supercooled large drop conditions:DOT/FAA/AR-09/10[R]. Washington, D. C.:DOT/FAA/AR, 2009.
[25] STEEN L E, IDE R F, VAN ZANTE J F. An assessment of the icing blade and the SEA multi-element sensor for liquid water content calibration of the NASA GRC icing research tunnel[C]//8th AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2016.
[26] Droplet Measurement Technologies Inc. Stand-alone liquid water content (LWC-200) sensor operator manual[R]. 2013.
[27] 郭向东,王梓旭,李明,等.结冰风洞中液滴过冷特性数值研究[J].航空学报, 2017, 38(10):121254. GUO X D, WANG Z X, LI M, et al. Numerical study of droplet supercooling in an icing wind tunnel[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(10):121254(in Chinese).
[28] 郭向东,王梓旭,李明,等.结冰风洞中液滴相变效应数值研究[J].航空学报, 2018, 39(3):121586. GUO X D, WANG Z X, LI M, et al. Numerical investigation of phase transition effects of droplet in icing wind tunnel[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(3):121586(in Chinese).
[29] MAREK C J, BARTLETT C S. Stability relationship for water droplet crystallization with the NASA lewis icing spray nozzle[C]//26th AIAA Aerospace Sciences Meeting. Reston:AIAA, 1988.
[30] NORDE E. Eulerian method for ice crystal icing in turbofan engines[D]. The Netherlands:University of Twente, 2017.
[31] LUDLAM F H. The heat economy of a rimed cylinder[J].Quarterly Journal of the Royal Meteorological Society, 1951, 77:663-666.
[32] 郭向东,柳庆林,赖庆仁,等. 大型结冰风洞气流场适航符合性验证[J].空气动力学学报, 2020(已录用). GUO X D, LIU Q L, LAI Q R, et al. Airworthiness compliance verification of the aerodynamic flowfield of the large icing wind tunnel[J].Acta Aerodynamica Sinica, 2020(accepted).
文章导航

/