流体力学与飞行力学

DSMC量子动理学模型在火星再入流动中的应用

  • 李锦 ,
  • 耿湘人 ,
  • 陈坚强 ,
  • 江定武 ,
  • 李红喆
展开
  • 1. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    2. 中国空气动力研究与发展中心 设备设计及测试技术研究所, 绵阳 621000

收稿日期: 2019-06-24

  修回日期: 2020-02-25

  网络出版日期: 2020-03-13

基金资助

国家数值风洞项目

Application of DSMC quantum kinetic model in re-entry flow of Mars

  • LI Jin ,
  • GENG Xiangren ,
  • CHEN Jianqiang ,
  • JIANG Dingwu ,
  • LI Hongzhe
Expand
  • 1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Facility Design and Instrumentation Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2019-06-24

  Revised date: 2020-02-25

  Online published: 2020-03-13

Supported by

National Numerical Wind Tunnel Project

摘要

为解决化学反应模型高温数据缺乏的难题,探索DSMC方法量子动理学(QK)模型在实际中的应用,本文将该模型进一步应用于火星探测器稀薄气动特性的数值预测。通过计算探路者号在85 km、95 km和110 km高度的稀薄绕流,评估了QK模型的性能和稀薄气体效应的影响规律。结果表明,QK模型不依赖宏观的化学反应速率系数,适用于火星再入流动计算。化学反应及其模型对气动力的影响很小,但对气动热特性的影响不容忽略,考虑化学反应后的驻点热流可以下降约12%~14%。

本文引用格式

李锦 , 耿湘人 , 陈坚强 , 江定武 , 李红喆 . DSMC量子动理学模型在火星再入流动中的应用[J]. 航空学报, 2020 , 41(7) : 123240 -123240 . DOI: 10.7527/S1000-6893.2020.23240

Abstract

To solve the problem of lacking high temperature data in chemical reaction models and explore the application capacity of the Quantum Kinetic (QK) model, this paper further applies this model to the reentry flow of the Mars exploration vehicle for numerical prediction of rarefied aerodynamic characteristics. Via calculation of the flow field of the Pathfinder at the heights of 85 km, 95 km, 110 km, respectively, the performance of the QK model and the influence of the rarefied gas effect are evaluated. Results show that the QK model which relies not on the macroscopic reaction rates is suitable for the Mars reentry flows. The rarefied aerodynamics is not sensitive to the chemical reaction and its model; however, the influence of the chemical reaction on the aerothermodynamics cannot be neglected. The heat flux on the stagnation point can reduce by about 12%-14% after the chemical reaction is considered.

参考文献

[1] SPENCER D, BLANCHARD R, BRAUN R, et al. Mars Pathfinder entry, descent and landing reconstruction[J]. Journal of Spacecraft and Rockets, 1999, 36(3):357-366.
[2] MOSS J N, WILMOTH R G, PRICE J M. DSMC simulations of blunt body flow for Mars entries:Mars pathfinder and Mars microprobe capsules[C]//32nd AIAA Thermophysics Conference. Reston:AIAA, 1997.
[3] EDQUIST K T, DESAI P N, SCHOENENBERGER M. Aerodynamics for the Mars Phoenix entry capsule[J]. Journal of Spacecraft and Rockets, 2011, 48(5):713-726.
[4] 吕俊明, 程晓丽, 王强. 飞行器进入火星大气的流场预测[J]. 中国空间科学学报, 2013, 33(2):129-134. LV J M, CHENG X L, WANG Q. Flow field prediction of an orbiter entering the Mars atmosphere[J]. Chinese Journal of Space Science, 2013, 33(2):129-134(in Chinese).
[5] 吕俊明, 苗文博, 黄飞, 等. 火星进入器小攻角飞行的静不稳定性[J]. 计算物理, 2016, 33(3):297-304. LV J M, MIAO W B, HUANG F, et al. Static instability of Mars entry vehicles flying at small angle of attack[J]. Chinese Journal of Computational Physics, 2016, 33(3):297-304(in Chinese).
[6] 黄飞, 吕俊明, 程晓丽, 等. 火星进入器高空稀薄气动特性[J]. 航空学报, 2017, 38(5):120457. HUANG F, LYU J M, CHENG X L, et al. Aerodynamics of Mars entry vehicles under hypersonic rarefied condition[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5):120457(in Chinese).
[7] 程晓丽, 李俊红, 王强. 空间飞行器在火星再入环境下的气动力特性[J]. 宇航学报, 2010, 31(4):967-972. CHENG X L, LI J H, WANG Q. Aerodynamic force characteristics of Mars entry vehicles[J]. Journal of Astronautics, 2010, 31(4):967-972(in Chinese).
[8] 梁杰, 李志辉, 杜波强, 等. 真实气体效应对MSL火星进入气动特性的影响研究[J]. 航天返回与遥感, 2017, 38(4):8-17. LIANG J, LI Z H, DU B Q, et al. Numerical research of real gas effect on MSL Mars entry aerodynamic characteristics[J]. Spacecraft Recovery & Remote Sensing, 2017, 38(4):8-17(in Chinese).
[9] BIRD G A. The Q-K model for gas-phase chemical reaction rates[J]. Physics of Fluids, 2011, 23:106101.
[10] 陈浩, 李林颖, 张斌, 等. Q-K模型在氮氧离解复合反应中的评估[J]. 空气动力学学报,2018,36(1):17-21. CHEN H, LI L Y, ZHANG B, et al. Assessment of Q-K model for nitrogen and oxygen dissociation-recombination[J]. Acta Aerodnamica Sinica, 2018, 36(1):17-21(in Chinese).
[11] 杨超, 孙泉华. 高温气体热化学反应的DSMC微观模型分析[J]. 力学学报, 2018, 50(4):722-733. YANG C, SUN Q H. Analysis of DSMC reaction models for high temperature gas simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4):722-733(in Chinese).
[12] 李锦, 耿湘人, 陈坚强, 等. 量子动理学化学反应模型的应用研究[J]. 航空学报, 2019, 40(4):122176. LI J, GENG X R, CHEN J Q, et al. Numerical simulation on DSMC quantum kinetic chemical reaction model[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122176(in Chinese).
[13] HINDELANG F J. Coupled vibration and dissociation relaxation behind strong shock waves in carbon dioxide[R]. New York:Ames Research Center, 1967.
[14] HASH D B, HASSAN H A. Monte Carlo simulation of entry in the Martian atmosphere[J]. Journal of Thermophysics and Heat Transfer, 1993, 7(2):228-232.
[15] CANDLER G. Computation of thermo-chemical nonequilibrium Martian atmosphere entry flows[C]//AIAA/ASME 5th Joint Thermophysics and Heat Transfer Conference. Reston:AIAA, 1990.
[16] EVANS J S, SCHEXNAYDER C J, GROSEF W L. Effects of nonequilibrium ablation vhemistry on Viking radio blackout[J]. Journal of Spacecraft and Rockets, 1974, 11(2):84-88.
[17] MITCHELTREE R A, MOSS J N, CHEATWOOD F M, et al. Aerodynamics of the Mars microprobe entry vehicles[J]. Journal of Spacecraft and Rockets, 1999, 36(3):392-398.
[18] MOSS J N, WILMOTH R G, PRICE J M. Direct simulation Monte Carlo calculations of aerothermodynamics for Mars microprobe capsules[J]. Journal of Spacecraft and Rockets, 1999, 36(3):399-404.
[19] 李锦. 高超声速稀薄气体流动的DSMC方法研究及应用[D]. 绵阳:中国空气动力研究与发展中心, 2018. LI J. Research and application of the direct simulation Monte Carlo method for hypersonic rarefied flows[D]. Mianyang:China Aerodynamics Research and Development Center, 2018(in Chinese).
[20] 唐志共, 杨彦广, 梁杰, 等. 球双锥外形稀薄过渡流区气动特性研究[J]. 空气动力学学报, 2006, 24(3):389-395. TANG Z G, YANG Y G, LIANG J, et al. Aerodynamic characteristics of rarefied transitional flow around sphere-bicone configuration[J]. Acta Aerodynamica Sinica, 2006, 24(3):389-395(in Chinese).
文章导航

/