电子电气工程与控制

结合核相关滤波器和深度学习的运动相机中无人机目标检测

  • 梁栋 ,
  • 高赛 ,
  • 孙涵 ,
  • 刘宁钟
展开
  • 1. 南京航空航天大学 计算机科学与技术学院, 南京 211106;
    2. 模式分析与机器智能工业和信息化部重点实验室, 南京 211106;
    3. 软件新技术与产业化协同创新中心, 南京 211106

收稿日期: 2019-12-17

  修回日期: 2020-01-07

  网络出版日期: 2020-03-06

基金资助

国家自然科学基金(61601223);国防科技创新特区项目

UAV detection in motion cameras combining kernelized correlation filters and deep learning

  • LIANG Dong ,
  • GAO Sai ,
  • SUN Han ,
  • LIU Ningzhong
Expand
  • 1. College of Computer science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
    2. MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China;
    3. Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 211106, China

Received date: 2019-12-17

  Revised date: 2020-01-07

  Online published: 2020-03-06

Supported by

National Natural Science Foundation of China (61601223); National Defense Technology Innovation Zone Project

摘要

针对无人机与相机快速相对运动造成的运动模糊问题,以及小型无人机外观信息缺失和背景复杂造成漏警和虚警问题,提出了一种新的无人机检测-跟踪方法。针对成像尺寸小于32像素×32像素的无人机目标,提出改进的多层特征金字塔的分类和目标框回归器作为目标检测器,克服漏警。利用检测结果初始化基于核相关滤波的目标跟踪器,并持续修正跟踪结果,跟踪结果为剔除检测器虚警提供依据。在跟踪过程中,引入对观测场景纹理自适应的相机运动补偿策略实现目标重定位。多场景下的实验结果表明:提出的方法在对高速运动小目标的检测和跟踪指标上显著优于传统方法,且运动补偿机制的引入进一步增强了方法在极端复杂场景下的鲁棒性。

本文引用格式

梁栋 , 高赛 , 孙涵 , 刘宁钟 . 结合核相关滤波器和深度学习的运动相机中无人机目标检测[J]. 航空学报, 2020 , 41(9) : 323733 -323733 . DOI: 10.7527/S1000-6893.2020.23733

Abstract

To solve the problem of motion blurs caused by the rapid relative movement of the UAV and the camera, and the missed detection and false detection problems resulted from the lack of appearance information and complex background of small drones, a new drone detection-tracking method is proposed. Aiming at UAV targets with imaging sizes less than 32 pixel×32 pixel, an improved multi-layer feature pyramid classification and a target box regressor are proposed as target detectors to overcome missed detection. The detection result is used to initialize the target tracker based on kernelized correlation filters, and continuously modify the tracking result which provides a basis for the elimination of false detection. During the tracking process, a camera motion compensation strategy adaptive to the observed scene texture is introduced to achieve target relocation. Experimental results in multiple scenarios show that the proposed method is significantly better than traditional ones in the detection and tracking of small high-speed moving targets. In addition, the introduction of motion compensation mechanism further enhances the robustness of the method in extremely complex scenarios.

参考文献

[1] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2016.
[2] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:Unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2016.
[3] LIU W, ANGUELOV D, ERHAN D, et al. SSD:Single shot MultiBox detector[C]//European Conference on Computer Vision. Berlin:Springer, 2016.
[4] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 99:2999-3007.
[5] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):583-596.
[6] ROZANTSEV A, LEPETIT V, FUA P. Detecting flying objects using a single moving camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(5):879-892.
[7] ROZANTSEV A, LEPETIT V, FUA P. Flying objects detection from a single moving camera[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2015.
[8] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Computer Society, 2017.
[9] SZNITMAN R, BECKER C, FLEURET F, et al. Fast object detection with entropy-driven evaluation[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2013.
[10] DOLLAR P, RABAUD V, COTTRELL G, et al. Behavior recognition via sparse spatio-temporal features[C]//2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance. Piscataway:IEEE Press, 2005.
[11] 刘芳, 杨安喆, 吴志威. 基于自适应Siamese网络的无人机目标跟踪算法[J]. 航空学报, 2020, 41(1):323423. LIU F, YANG A Z, WU Z W. UAV target tracking algorithm based on adaptive Siamese network[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):323423(in Chinese).
[12] 刘芳, 王洪娟, 黄光伟, 等. 基于自适应深度网络的无人机目标跟踪算法[J]. 航空学报, 2019, 40(3):322332. LIU F,WANG H J,HUANG G W, et al. UAV target tracking algorithm based on adaptive deep network[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):322332(in Chinese).
[13] REDMON J, FARHADI A. YOLO9000:Better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway:IEEE Press, 2017:6517-6525.
[14] REDMON J, FARHADI A. YOLOv3:An incremental improvement[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway:IEEE Press, 2018:13674-13682.
[15] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway:IEEE Press, 2016:770-778.
[16] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 39(4):640-651.
[17] KENNARD H R W. Ridge regression:Applications to nonorthogonal problems[J]. Technometrics, 1970, 12(1):69-82.
[18] FISCHLER M A, BOLLES R C. Random sample consensus:A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6):381-395.
[19] FOROOSH H, ZERUBIA J, BERTHOD M, et al. Extension of phase correlation to subpixel registration[J]. IEEE Transactions on Image Processing, 2002, 11(3):188-200.
[20] ERTURK S. Digital image stabilization with sub-image phase correlation based global motion estimation[J]. IEEE Transactions on Consumer Electronics, 2003, 49(4):1320-1325.
[21] LUCENA M, FUERTES J M, GOMEZ J I, et al. Optical flow-based probabilistic tracking[C]//Information Sciences Signal Processing and Their Applications, 2003:219-222.
[22] SARKAR N, CHAUDHURI B B. An efficient differential box-counting approach to compute fractal dimension of image[J]. IEEE Transactions on Systems, Man and Cybernetics, 1994, 24(1):115-120.
[23] ROLPH S. Fractal geometry:Mathematical foundations and applications[J]. Mathematical Gazette, 1990, 74(469):288-317.
[24] LI B, YAN J, WU W, et al. High performance visual tracking with siamese region proposal network[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway:IEEE Press, 2018:8971-8980.
[25] DANELLJAN M, BHAT G, KHAN F S, et al. ECO:Efficient convolution operators for tracking[EB/OL]. Computer Vision and Pattern Recognition(CVPR) (2017-04-10)[2019-12-15]. https//arxiv.org/abs/1611.09224.
[26] BHAT G, DANELLJAN M, VAN GOOL L, et al. Learning discriminative model prediction for tracking[EB/OL]. Computer Vision and Pattern Recognition(CVPR) (2019-04-15)[2019-12-15]. https//arxiv.org/pdf/1904.07220.
文章导航

/