微吹气技术能够改变平板湍流流场结构,减小平板表面的摩擦阻力。采用直接数值模拟方法,计算了来流马赫数0.7条件下,流场流过光滑平板和NASA-PN2多孔平板表面两种情况,通过对比这两个算例的相关流场特征,验证了微吹气控制减阻的有效性,局部最大减阻率达到了45%,并且由于微吹气控制的"记忆"功能,减阻效果在微吹气流域下游仍会持续一段距离,增加了减阻区域的流向面积。壁湍流摩擦减阻的原因在于近壁区域出现了一个低速的"湍流斑",黏性底层厚度增加,速度型曲线被抬升。但与此同时,边界层内湍流速度脉动也得到了增强。进一步对流向脉动涡演化规律分析,发现微吹气对流向脉动涡发挥着多重作用。在增加流向脉动涡强度的同时,还使得流向涡团向远离壁面抬升,这样减小了流向涡与壁面之间直接作用。此外,微吹射流产生的冲击作用会在流向涡表面留下凹痕,使得流向涡分散成相对小的涡团结构。
Micro-blowing technology can change the turbulent structure in a flat plate flow and reduce the wall friction drag. In this paper, two cases of inflow through a smooth plate and a NASA-PN2 porous plate at Mach number 0.7 are respectively resolved by direct numerical simulation. Comparison of the flow characteristics in the two cases proves the effectiveness of micro-blowing technology on drag reduction, with the maximum rate reaching 45%. Furthermore, because of the "memory" function controlled by micro-blowing, the effect will last for a certain distance in the downstream, thus expanding the area of drag reduction. The explanation for the drag reduction in a wall turbulent boundary layer is the production of a low-speed "turbulence spot" in the near-wall region, which increases the thickness of viscous sub-layer and uplifts the average velocity profile. However, the turbulent velocity fluctuations in the boundary layer are strengthened simultaneously. Further analysis of the evolution of stream-wise vortex fluctuations reveals that micro-blowing plays multiple roles. It not only enhances the intensity of stream-wise vortex fluctuations, but also uplifts the stream-wise vortex clusters away from the wall, hence directly reducing the interaction between the stream-wise vortex and the wall surface. In addition, the impact caused by micro-blowing will leave dents on the vortex surface, leading to more dispersed and finely broken vortex clusters.
[1] KORNILOV V I, BOIKO A V. Efficiency of air microblowing through microperforated wall for flat plate drag reduction[J].AIAA Journal, 2012, 50(3):724-732.
[2] LARDEAU S, LESCHZINER M A. The streamwise drag-reduction response of a boundary layer subjected to a sudden imposition of transverse oscillatory wall motion[J].Physics of Fluids, 2013, 25(7):075109.
[3] DU Y, KARNIADAKIS G E. Suppressing wall turbulence by means of a transverse traveling wave[J].Science, 2000, 288(5469):1230-1234.
[4] CUI G, PAN C,WU D, et al. Effect of drag reducing riblet surface on coherent structure in turbulent boundary layer[J].Chinese Journal of Aeronautics, 2019, 32(11):2433-2442.
[5] MARTELL M B, ROTHSTEIN J P, PEROT J B. An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation[J].Physics of Fluids, 2010, 22(6):065102.
[6] HWANG D P, BIESIADNY T. Experimental evaluation of penalty associated with micro-blowing for reducing skin friction[C]//36th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1997.
[7] TILLMAN T, HWANG D. Drag reduction on a large-scale nacelle using a micro-blowing technique[C]//37th Aerospace Sciences Meeting and Exhibit. Reston:AIAA,1999.
[8] KAMETANI Y, KOTAKE A, FUKAGATA K, et al. Drag reduction capability of uniform blowing in supersonic wall-bounded turbulent flows[J].Physical Review Fluids, 2017, 2(12):123904.
[9] KIM K, SUNG H J. Effects of unsteady blowing through a spanwise slot on a turbulent boundary layer[J].Journal of Fluid Mechanics, 2006, 557:423-450.
[10] HWANG D. Review of research into the concept of the microblowing technique for turbulent skin friction reduction[J].Progress in Aerospace Sciences, 2004, 40(8):559-575.
[11] LIN Y L, CHYU M, SHIH T, et al. Skin-friction reduction through micro blowing[C]//36th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1998.
[12] HWANG D. Experimental study of characteristics of micro-hole porous skins for turbulent skin friction reduction[C]//23rd Congress of International Council of the Aeronautical Sciences, 2002.
[13] HWANG D. An experimental study of turbulent skin friction reduction in supersonic flow using a microblowing technique[C]//38th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1999.
[14] KORNILOV V I. Current state and prospects of researches on the control of turbulent boundary layer by air blowing[J].Progress in Aerospace Sciences, 2015, 76:1-23.
[15] KORNILOV V I, BOIKO A V. Formation of the turbulent boundary layer at air blowing through a wall with an abrupt change in boundary conditions[J].Thermophysics and Aeromechanics, 2014, 21(4):421-439.
[16] KAMETANI Y, FUKAGATA K, ÖRLÜ R, et al. Drag reduction in spatially developing turbulent boundary layers by spatially intermittent blowing at constant mass-flux[J].Journal of Turbulence, 2016, 17(10):913-929.
[17] LI J, LEE C H, JIA L, et al. Numerical study on flow control by micro-blowing[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009.
[18] 李舰, 李椿萱, 贾力平, 等. 微吹减阻技术影响因素的数值模拟[J].北京航空航天大学学报, 2010,36(2):218-222. LI J, LEE C H, JIA L P, et al. Numerical simulation on influencing parameter of micro-blowing technique[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(2):218-222(in Chinese).
[19] 李舰, 沈娟, 李椿萱. 一种可用于微吹吸流动控制技术研究的孔隙壁模型[J].中国科学:物理学力学天文学, 2014, 44(2):221. LI J, SHEN J, LEE C H. A micro-porous wall model for micro-blowing/suction flow system[J].Scientia Sinica Physica, Mechanica & Astronomica, 2014, 44(2):221. (in Chinese).
[20] KAMETANI Y, FUKAGATA K. Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction[J].Journal of Fluid Mechanics, 2011, 681:154-172.
[21] KAMETANI Y, KOTAKE A, FUKAGATA K, et al. Drag reduction capability of uniform blowing in supersonic wall-bounded turbulent flows[J].Physical Review Fluids, 2017, 2(12):123904.
[22] 傅德薰, 马延文, 李新亮, 等. 可压缩湍流直接数值模拟[M]. 北京:科学出版社, 2010:364-367. FU D X, MA Y W, LI X L, et al. Direct numerical simulation of compressible turbulence[M]. Beijing:Science Press, 2010:364-367(in Chinese).
[23] ZHOU Y,LI X L,FU D X, et al. Coherent structures in transition of a flat-plate boundary layer at Ma=0.7[J].Chinese Physics Letters, 2007, 24(1):147.
[24] POINSOT T J, LELEF S K. Boundary conditions for direct simulations of compressible viscous flows[J].Journal of Computational Physics, 1992, 101(1):104-129.
[25] PIROZZOLI S, GRASSO F. Direct numerical simulations of isotropic compressible turbulence:Influence of compressibility on dynamics and structures[J].Physics of Fluids, 2004, 16(12):4386-4407.
[26] KARLSSON R I, JOHANSSON T G. LDV measurements of higher order moments of velocity fluctuations in a turbulent boundary layer[C]//3rd International Symposium on Applications of Laser Anemometry to Fluid Mechanics, 1986.
[27] ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J].Journal of Fluid Mechanics, 1999, 387:353-396.
[28] HEAD M R, BANDYOPADHYAY P. New aspects of turbulent boundary-layer structure[J].Journal of Fluid Mechanics, 1981, 107:297-338.
[29] PARK J, CHOI H. Effects of uniform blowing or suction from a spanwise slot on a turbulent boundary layer flow[J].Physics of Fluids, 1999, 11(10):3095-3105.
[30] KAMETANI Y, FUKAGATA K, ÖRLÜ R, et al. Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number[J].International Journal of Heat and Fluid Flow, 2015, 55:132-142.