流体力学与飞行力学

基于XML的飞行仿真气动力模型存储格式

  • 宋宏川 ,
  • 詹浩 ,
  • 魏中成 ,
  • 任浩雷 ,
  • 夏露
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 中国航空工业集团公司成都飞机设计研究所, 成都 610091;
    3. 西安地平线电子科技有限公司, 西安 710072

收稿日期: 2019-12-26

  修回日期: 2020-02-01

  网络出版日期: 2020-02-21

基金资助

国家自然科学基金(11672236)

XML based storage format of aerodynamic models in flight simulation

  • SONG Hongchuan ,
  • ZHAN Hao ,
  • WEI Zhongcheng ,
  • REN Haolei ,
  • XIA Lu
Expand
  • 1. School of Aeronautics, Northwestern Polytechnial University, Xi'an 710072, China;
    2. AVIC Chengdu Aircraft Design and Research Institute, Chengdu 610091, China;
    3. Skyline Technologies, Xi'an 710072, China

Received date: 2019-12-26

  Revised date: 2020-02-01

  Online published: 2020-02-21

Supported by

National Natural Science Foundation of China (11672236)

摘要

飞行仿真获取气动力/力矩的传统方法主要是将气动力模型硬编码在仿真程序进行求解。由于气动力模型和求解程序耦合,一旦修正或更换气动力模型,需要花费大量代价来重新构建仿真过程,无法满足现代飞行器仿真的需求。根据气动力模型树形结构的特点,提出了气动力模型树的概念并基于XML语言的特点设计了一种模型存储格式(MBX)来存储气动力模型树。MBX存储格式不仅提高了飞行仿真系统更换和修正气动力模型的效率,而且提高了气动力/力矩解算的通用性,使得气动力/力矩的求解能够被标准化。MBX存储格式作为气动力模型交换标准不仅能把不同部门交换气动力模型的时间从几周/人缩短至几天/人,也能加快气动力模型逼近飞机真实气动特性的进程。

本文引用格式

宋宏川 , 詹浩 , 魏中成 , 任浩雷 , 夏露 . 基于XML的飞行仿真气动力模型存储格式[J]. 航空学报, 2020 , 41(9) : 123766 -123766 . DOI: 10.7527/S1000-6893.2020.23766

Abstract

Aerodynamic force and moment in flight simulation are traditionally obtained through aerodynamic models hard-coded in calculation programs. Due to the coupling of aerodynamic models and calculation programs, considerable time and money are expended on the simulation reconstruction process in case of aerodynamic model changes. Therefore, the traditional method cannot satisfy modern flight simulation demands. Given the tree structure of aerodynamic models, the concept of aerodynamic model trees is proposed and a model storage format based on the characteristics of XML (MBX) is designed to store the aerodynamic model trees. MBX separates aerodynamic models from concrete calculation programs, leading to more efficient replacement and modification of aerodynamic models. Furthermore, it improves the universality of aerodynamic force and moment calculation, standardizing their solutions. As an exchange standard for aerodynamic models, MBX can reduce the transmission time of aerodynamic models between different institutions from staff-months to staff-days. In addition, it can expedite the process of modifying aerodynamic models to approach the actual aerodynamic characteristics of aircraft.

参考文献

[1] 童中翔, 王晓东. 飞行仿真技术的发展与展望[J]. 飞行力学, 2002(3):7-10. TONG Z X, WANG X D. Development and prospect of flight simulation technology[J]. Flight Dynamics, 2002(3):7-10(in Chinese).
[2] ALLERTON D. Principles of flight simulation[M]. New York:John Wiley & Sons, 2009.
[3] KLEIN V, MORELLI E A. Aircraft system identification:theory and practice[M]. Reston:AIAA, 2006.
[4] 汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报, 2016, 37(8):2331-2347. WANG Q, QING W Q, DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2331-2347(in Chinese).
[5] JACKSON E. Results of a flight simulation software methods survey[C]//Flight Simulation Technologies Conference, 1995:3414.
[6] NAPOLITANO M R. Aircraft dynamics[M]. New York:Wiley, 2012.
[7] 汪清, 蔡金狮. 飞机大攻角气动力建模研究进展[J]. 气动实验与测量控制, 1994, 8(3):7-16. WANG Q, CAI J S. Advance in aerodynamic modeling of airplane at high angles of attack[J]. Aerodynamic Experiment and Measurement & Control, 1994, 8(3):7-16(in Chinese).
[8] 蔡金狮. 飞行器系统辨识[M]. 北京:中国宇航出版社, 1995. CAI J S. Aircraft system identification[M]. Beijing:China Astronautic Publishing House, 1995(in Chinese).
[9] 吴凡, 姜长生. DATCOM在飞翼无人机飞行运动建模中的应用[J]. 飞机设计, 2010, 30(1):9-15. WU F, JIANG C S. The use of datcom method for flying wing UAV modeling[J]. Aircraft Design, 2010, 30(1):9-15(in Chinese).
[10] 张帅. 操稳特性快速评估及其在飞机设计中的应用[D]. 南京:南京航空航天大学, 2009. ZHANG S. Rapid evaluation for the stability and control of the aircraft and its application in aircraft design[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009(in Chinese).
[11] WILLIAMS J E, VUKELICH S R. The USAF stability and control digital datcom volume i, users manual:AFFDL-TR-79-3032[R]. St. Louis:McDonnel Douglas Astronautics Company, 1979.
[12] 米百刚, 詹浩, 朱军. 基于CFD数值仿真技术的飞行器动导数计算[J]. 空气动力学学报, 2014, 32(6):120-125. MI B G, ZHAN H, ZHU J. Calculation of dynamic derivates for aircraft based on CFD technique[J]. Acta Aerodynamica Sinica, 2014, 32(6):120-125(in Chinese).
[13] 严蔚敏, 吴伟民. 数据结构:C语言版[M]. 北京:清华大学出版社, 2002. YAN W M, WU W M. Data structure:C language[M]. Beijing:Tsinghua University Press, 2002(in Chinese).
[14] 张闻乾, 王伟, 段丽娟,等. XML解析技术及其在飞行数据存储及访问中的应用[J]. 测控技术, 2007, 26(12):19-21. ZHANG W Q, WANG W, DUAN L J, et al. XML parsing skill and the application in saving and accessing flying data[J]. Measurement & Control Technology, 2007, 26(12):19-21(in Chinese).
[15] 王宬, 吴成富, 陈怀民. 基于XML的飞行仿真模型管理系统研究[J]. 测控技术, 2008, 27(8):83-85. WANG C, WU C F, CHEN H M. Study on flight simulation model management based on XML[J]. Measurement & Control Technology, 2008, 27(8):83-85(in Chinese).
[16] 张煦冬. EDS技术在航天数据设计中的应用研究[D]. 北京:中国科学院大学, 2019. ZHANG X D. Applied study of EDS technology in aerospace data design[D]. Beijing:Chinese Academy of Science, 2019(in Chinese).
[17] COURAGE K G, WASHBURN S S, KIM J T. Development of an XML-based specification for traffic model data exchange[J]. Transportation Research Record, 2002, 1804(1):144-150.
[18] WEISS M A. Data structures and algorithms in C[M]. Pearson Education, 1997.
[19] VARDE A S, BEGLEY E F, FAHRENHOLZ-MANN S. MatML:XML for information exchange with materials property data[C]//Proceedings of the 4th International Workshop on Data Mining Standards, Services and Platforms, 2006:47-54.
[20] JACKSON E B, HILDRETH B. Flight dynamic model exchange using XML[C]//AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston:AIAA, 2002.
[21] REMPLE R K, TISCHLER M B. Aircraft and rotorcraft system identification:engineering methods with flight-test examples[M]. Reston:AIAA, 2006.
文章导航

/