材料工程与机械制造

铝锂合金加筋壁板剪切屈曲性能

  • 彭艺琳 ,
  • 马玉娥 ,
  • 赵阳 ,
  • 朱亮
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 中国航空工业集团公司 第一飞机设计研究院, 西安 710089

收稿日期: 2019-12-13

  修回日期: 2019-12-31

  网络出版日期: 2020-02-21

基金资助

国家自然科学基金(91860128,11572250)

Shear buckling performance of Al-Li alloy stiffened panels

  • PENG Yilin ,
  • MA Yu'e ,
  • ZHAO Yang ,
  • ZHU Liang
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. First Aircraft Institute, AVIC, Xi'an 710089, China

Received date: 2019-12-13

  Revised date: 2019-12-31

  Online published: 2020-02-21

Supported by

National Natural Science Foundation of China (91860128,11572250)

摘要

为研究剪切载荷下2A97铝锂合金加筋壁板的屈曲与后屈曲行为,设计了加筋壁板和夹具,完成了壁板的剪切试验;得到了加筋壁板的失稳载荷、破坏载荷以及破坏模式;采用受剪板屈曲与张力场理论计算了加筋壁板的剪切屈曲失稳载荷;建立有限元数值计算模型对加筋壁板屈曲行为进行计算分析,并将数值结果与试验结果对比。结果表明:加筋壁板的屈曲模式为筋条间蒙皮的局部屈曲;加筋壁板的破坏模式为沿加载对角线方向蒙皮的凸起,破坏原因为蒙皮的塑性变形、撕裂以及筋条的扭转变形;利用张力场理论可以得到较准确的屈曲失稳载荷,与试验误差为6.56%;数值模拟得到的屈曲与破坏模式与试验吻合,失稳载荷和极限载荷与试验结果误差分别为1.22%和11.52%。

本文引用格式

彭艺琳 , 马玉娥 , 赵阳 , 朱亮 . 铝锂合金加筋壁板剪切屈曲性能[J]. 航空学报, 2020 , 41(11) : 423729 -423729 . DOI: 10.7527/S1000-6893.2020.23729

Abstract

To study the buckling and post-buckling behaviors of 2A97 Al-Li alloy stiffened panels under shear loads, 2A97 Al-Li alloy stiffened panels are designed and shear static tests are performed, obtaining the buckling load, failure load and failure mode of the panels. Buckling and tension field theories are adopted to calculate the buckling behavior of the stiffened panels under shear loading and the finite element method used to model and analyze buckling behavior of the stiffened panels, the numerical results of which are compared with the experimental results. It is shown that the buckling mode of the stiffened panels is the local buckling of the skin between the ribs; the failure mode is the bulge of the skin along the loading diagonal direction, which is caused by the plastic deformation and the tear of the skin and the torsion of ribs. A relatively accurate buckling load can be obtained by the tension field theory, with an error of 6.56% compared with the experimental results. While the buckling and the failure modes are consistent with those in the experiments, the buckling load and the ultimate load have errors of 1.22% and 11.52%, respectively.

参考文献

[1] 邵青, 何宇廷. 复合材料加筋板剪切稳定性研究[J].航空精密制造技术, 2010, 46(6):46-48. SHAO Q, HE Y T. Study on shear stability performance of composite stiffened panel[J]. Aviation Precision Manufacturing Technology, 2010, 46(6):46-48(in Chinese).
[2] 崔德刚. 结构稳定性设计手册[M]. 北京:航空工业出版社, 2006. CUI D G. Design manual for structural stability[M]. Beijing:Aviation Industry Press, 2006(in Chinese).
[3] MURPHY A, MCCUNE W, QUINN D, et al. The characterization of friction stir welding process effects on stiffened panel buckling performance[J]. Thin-Walled Structures, 2007, 45(3):339-351.
[4] MO Y M, GE D Y, HE B L. Experiment and optimization of the hat-stringer-stiffened composite panels under axial compression[J]. Composites Part B:Engineering, 2016, 84:285-293.
[5] XU M C, SONG Z J, ZHANG B W, et al. Empirical formula for predicting ultimate strength of stiffened panel of ship structure under combined longitudinal compression and lateral loads[J]. Ocean Engineering, 2018, 162:161-175.
[6] OZDEMIR M, ERGIN A, YANAGIHARA D, et al. A new method to estimate ultimate strength of stiffened panels under longitudinal thrust based on analytical formulas[J]. Marine Structures, 2018, 59:510-535.
[7] 石经纬, 赵娟, 刘传军, 等. 复合材料翼面壁板轴压稳定性[J]. 复合材料学报,2020,37(6):1321-1333. SHI J W, ZHAO J, LIU C J, et al. Stability of composite stiffened panels under compression[J]. Acta Materiae Compositae Sinica,2020,37(6):1321-1333.
[8] BAI R X, LEI Z K, WEI X, et al. Numerical and experimental study of dynamic buckling behavior of a J-stiffened composite panel under in-plane shear[J]. Composite Structures, 2017, 166:96-103.
[9] MURPHY A, PRICE M, LYNCH C, et al. The computational post-buckling analysis of fuselage stiffened panels loaded in shear[J]. Thin-Walled Structures, 2005, 43(9):1455-1474.
[10] WANG F, KEE PAIK J, JU KIM B, et al. Ultimate shear strength of intact and cracked stiffened panels[J]. Thin-Walled Structures, 2015, 88:48-57.
[11] SU Y R, GUAN Z D, WANG X, et al. Buckling and post-buckling behavior of titanium alloy stiffened panels under shear load[J]. Chinese Journal of Aeronautics, 2019, 32(3):619-626.
[12] 张彦军, 朱亮, 杨卫平, 等. 舰载机机身加筋壁板屈曲疲劳试验研究[J]. 航空学报, 2019, 40(4):622276. ZHANG Y J, ZHU L, YANG W P, et al. Buckling fatigue test of fuselage stiffened panel for carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):622276(in Chinese).
[13] 刘存, 张磊, 杨卫平. 舰载机壁板剪切后屈曲承载能力预测与试验验证[J]. 航空学报, 2019, 40(4):622300. LIU C, ZHANG L, YANG W P. Post-buckling study and test verification of carrier-based aircraft wing stiffened panels under shear load[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):622300(in Chinese).
[14] ZHANG T J, LI S L, CHANG F, et al. An experimental and numerical analysis for stiffened composite panel subjected to shear loading in hygrothermal environment[J]. Composite Structures, 2016, 138:107-115.
[15] LEI X K, BAI R X, TAO W, et al. Optical measurement on dynamic buckling behavior of stiffened composite panels under in-plane shear[J]. Optics and Lasers in Engineering, 2016, 87:111-119.
[16] 汪厚冰, 林国伟, 韩雪冰, 等. 复合材料帽形加筋壁板剪切屈曲性能[J]. 航空学报, 2019, 40(8):222889. WANG H B, LIN G W, HAN X B, et al. Shear buckling performance of composite hat-stiffened panels[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):222889(in Chinese).
[17] 徐进军, 江茫, 熊纯. 铝锂合金及其在航空航天领域成形技术的研究进展[J]. 热加工工艺,2019,48(24):11-16. XU J J, JIANG M, XIONG C. Research progress of Al-Li alloys and its forming technology for aeronautic and astronautic industry[J]. Hot Working Technology,2019,48(24):11-16.
[18] 张显峰, 陆政, 高文理, 等. 2A66铝锂合金板材各向异性研究[J]. 材料工程, 2017(7):11-16. ZHANG X F, LU Z, GAO W L. et al. Anisotropyof 2A66 Al-Li alloy sheet[J]. Journal of Materials Engineering, 2017(7):11-16(in Chinese).
[19] GAO C, LUAN Y, YU J C, et al. Effect of thermo-mechanical treatment process on microstructure and mechanical properties of 2A97 Al-Li alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7):2196-2202.
[20] ZHONG J, ZHONG S, ZHENG Z Q, et al. Fatigue crack initiation and early propagation behavior of 2A97 Al-Li alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(2):303-309.
[21] 金阳, 王少刚, 黄炜, 等. 新型铝锂合金激光焊接数值模拟分析及其试验验证[J]. 热加工工艺, 2019, 48(21):163-169. JIN Y, WANG S G, HUANG W, et al. Numerical simulation analysis and experimental verification of laser beam welding of new type Al-Li alloy[J]. Hot Working Technology, 2019, 48(21):163-169(in Chinese).
[22] LI Y, SHI Z, LIN J, et al. FE simulation of asymmetric creep-ageing behaviour of AA2050 and its application to creep age forming[J]. International Journal of Mechanical Sciences, 2018, 140:228-240.
[23] CHU Q, LI W Y, YANG X W, et al. Microstructure and mechanical optimization of probeless friction stir spot welded joint of an Al-Li alloy[J]. Journal of Materials Science & Technology, 2018, 34(10):1739-1746.
[24] 张华, 孔德跃, 陈雪峰, 等. 2A97铝锂合金搅拌摩擦焊[J]. 焊接学报, 2012, 33(5):41-44. ZHANG H, KONG D Y, CHEN X F, et al. Study on friction stir welding of 2A97 Al-Li alloy[J]. Transactions of the China Welding Institution, 2012, 33(5):41-44(in Chinese).
[25] 郑修麟. 材料的力学性能[M]. 西安:西北工业大学出版社, 2007. ZHENG X L. Mechanical behavior of material[M]. Xi'an:Northwestern Polytechnical University Press, 2007(in Chinese).
[26] 沈世钊, 陈昕. 网格结构稳定性[M]. 北京:科学出版社, 1999. SHEN S Z, CHEN X. Stability of net-shell structure[M]. Beijing:Science Publishing, 1999(in Chinese).
[27] 初冠南, 张彩英, 鲁国春. 初始缺陷对耐压结构承载性能影响[J]. 精密成形工程, 2014, 6(5):80-84. CHU G N, ZHANG C Y, LU G C. Influence of initial imperfections on the bearing capacity of pressure resistant structure[J]. Journal of Netshape Forming Engineering, 2014, 6(5):80-84(in Chinese).
[28] WITTENBERG T C, BATEN T J V, BOER A D. Design of fibre metal laminate shear panels for ultra-high capacity aircraft[J]. Aircraft Design, 2001, 4(2-3):99-113.
文章导航

/