为了实时检测空间机械臂关节故障的发生并获得有效的故障信息,提出一种基于状态观测器的关节故障诊断方法。通过结合滑模变结构控制理论设计滑模状态观测器,获得机械臂各运行状态的残差信息,并将其与设定的阈值比较,实现关节故障的检测。进而引入不同的故障模式,构建故障数据库,将实际关节故障所导致的机械臂故障残差信息与故障数据库对比,完成故障发生位置及其故障程度的识别。所提诊断方法考虑了空间机械臂系统内部强耦合特性,能够及时检测故障的发生并获取有效的故障信息。最后以7自由度空间机械臂为对象开展数值仿真研究,验证了所提关节故障诊断方法的有效性。
To detect the joint failure of space manipulators in real time and obtain effective fault information, a fault diagnosis method based on state observers is proposed. Through the design of a sliding mode state observer based on the sliding mode control theory, the residual information of each running status for the manipulator is obtained. A comparison of the residual information and the preset threshold is then conducted to achieve joint failure detection. In addition, different failure modes are introduced to build a failure database with which the residual information of the manipulator caused by the actual joint failure is compared, thereby realizing the location and degree identification of the failure. Taking the strong coupling characteristics of the space manipulator into account, the fault diagnosis method proposed in this paper can detect the joint failure in time and obtain effective fault information. The effectiveness and correctness of the proposed method is verified by numerical simulation of a 7-DOF space manipulator.
[1] JIA J, JIA Y M, SUN S H. Preliminary design and development of an active suspension gravity compensation system for ground verification[J]. Mechanism and Machine Theory, 2018, 128:492-507.
[2] 温卓漫, 王延杰, 邸男, 等. 空间站机械臂位姿测量中合作靶标的快速识别[J]. 航空学报, 2015, 36(4):1330-1338.WEN Z M, WANG Y J, DI N, et al. Fast recognition of cooperative target used for position and orientation measurement of space station's robot arm[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1330-1338(in Chinese).
[3] ULRICH S, SASIADEK J Z, BARKANA I. Nonlinear adaptive output feedback control of flexible-joint space manipulators with joint stiffness uncertainties[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6):1961-1975.
[4] JIANG B, WANG J L, SOH Y C. An adaptive technique for robust diagnosis of faults with independent effects on system outputs[J]. International Journal of Control, 2002, 75(11):792-802.
[5] CHENG Y, WANG R X, XU M Q, et al. Simultaneous state and actuator fault estimation for satellite attitude control systems[J]. Chinese Journal of Aeronautics, 2016, 29(3):714-737.
[6] TADIC P, DUROVI Z. Particle filtering for sensor fault diagnosis and identification in nonlinear plants[J]. Journal of Process Control, 2014, 24(4):401-409.
[7] CHEN X Q, SUN R, JIANG W C, et al. A novel two-stage extended Kalman filter algorithm for reaction flywheels fault estimation[J]. Chinese Journal of Aeronautics, 2016, 29(2):462-469.
[8] FAN C G, XIE ZW, LIU Y W, et al. Adaptive controller based on spatial disturbance observer in a microgravity environment[J]. Sensors, 2019, 19(21):1-22.
[9] MU Z G, HAN L, XU W F, et al. Kinematic analysis and fault-tolerant trajectory planning of space manipulator under a single joint failure[J]. Robotics and Biomimetics, 2016, 3(1):1-16.
[10] WANG Y L, MA G F, DING S X, et al. Subspace aided data-driven design of robust fault detection and isolation systems[J]. Automatica, 2011, 47(11):2474-2480.
[11] XU F, YAN J B, WANG X Q, et al. Conservatism comparison of set-based robust fault detection methods:Set-theoretic UIO and interval observer cases[J]. Automatica, 2019,105:307-313.
[12] 张静, 缑林峰. 航空发动机传感器故障鲁棒检测方法[J]. 计算机仿真, 2012, 29(2):42-45. ZHANG J, GOU L F. Robust fault detection method of aircraft engine sensors[J]. Computer Simulation, 2012, 29(2):42-45(in Chinese).
[13] FRAVOLINI M L, DEL C G, PAPA U, et al. Data-driven schemes for robust fault detection of air data system sensors[J]. IEEE Transactions on Control Systems Technology, 2017, 27(1):234-248.
[14] KABURLASOS V G, ATHANASIADIS I N, MITKAS P A. Fuzzy lattice reasoning (FLR) classifier and its application for ambient ozone estimation[J]. International Journal of Approximate Reasoning, 2007, 45(1):152-188.
[15] 王建国. 水下机器人运动控制与故障诊断技术研究[D]. 哈尔滨:哈尔滨工程大学, 2011:78-85. WANG J G. Research on motion control and fault diagnosis of underwater vehicle[D]. Harbin:Harbin Engineering University, 2011:78-85(in Chinese).
[16] MAI S J, HU H F, XU J. Attentive matching network for few-shot learning[J]. Computer Vision and Image Understanding, 2019, 187:1-13.
[17] ERTUGRUL O F. A novel distance metric based on differential evolution[J]. Arabian Journal for Science and Engineering, 2019, 44(11):9641-9651.
[18] GU Z, ZHANG J H, DU L L. Fault tolerant control for a class of time-delay systems with intermittent actuators failure[J]. Control and Decision, 2011, 26(12):1829-1834.
[19] ZHAO B, LI Y C. Local joint information based active fault tolerant control for reconfigurable manipulator[J]. Nonlinear Dynamics, 2014, 77(3):859-876.
[20] ZHANG L, JIA Q X, CHEN G, et al. Pre-impact trajectory planning for minimizing base attitude disturbance in space manipulator systems for a capture task[J]. Chinese Journal of Aeronautics, 2015, 28(4):1199-1208.
[21] 刘金琨, 孙富春. 滑模变结构控制理论及其算法研究与进展[J]. 控制理论与应用, 2016, 24(3):407-418. LIU J K, SUN F C. Research and development on theory and algorithms of sliding mode control[J]. Control Theory and Applications, 2016, 24(3):407-418(in Chinese).
[22] WU S F, ZHANG J W, CHAI B B. Adaptive super-twisting sliding mode observer based robust backstepping sensorless speed control for IPMSM[J]. ISA Transactions, 2019, 92:155-165.
[23] XIONG S F, WEI M Y, ZHAO M Y, et al. Hyperbolic tangent function weighted optimal intercept angle guidance law[J]. Aerospace Science and Technology, 2018, 78:604-619.